Microchip Technology MSCSM170TAM45CT3AG
Microchip Technology MSCSM170TAM45CT3AG
feed

Microchip Technology MSCSM170TAM45CT3AG

Manufacturer No:

MSCSM170TAM45CT3AG

Utmel No:

1610-MSCSM170TAM45CT3AG

Package:

Module

ECAD Model:

Description:

PM-MOSFET-SIC-SBD-SP3F

Quantity:

Unit Price: $260.167859

Ext Price: $260.17

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 2149

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $260.167859

    $260.17

  • 10

    $245.441376

    $2,454.41

  • 100

    $231.548468

    $23,154.85

  • 500

    $218.441951

    $109,220.98

  • 1000

    $206.077312

    $206,077.31

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
MSCSM170TAM45CT3AG information

Specifications
Microchip Technology MSCSM170TAM45CT3AG technical specifications, attributes, parameters and parts with similar specifications to Microchip Technology MSCSM170TAM45CT3AG.
  • Type
    Parameter
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Chassis Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    Module
  • Supplier Device Package

    The parameter "Supplier Device Package" in electronic components refers to the physical packaging or housing of the component as provided by the supplier. It specifies the form factor, dimensions, and layout of the component, which are crucial for compatibility and integration into electronic circuits and systems. The supplier device package information typically includes details such as the package type (e.g., DIP, SOP, QFN), number of pins, pitch, and overall size, allowing engineers and designers to select the appropriate component for their specific application requirements. Understanding the supplier device package is essential for proper component selection, placement, and soldering during the manufacturing process to ensure optimal performance and reliability of the electronic system.

    -
  • Mfr
    Microchip Technology
  • Package
    Bulk
  • Product Status
    Active
  • Current - Continuous Drain (Id) @ 25℃
    64A (Tc)
  • Base Product Number

    "Base Product Number" (BPN) refers to the fundamental identifier assigned to a component by the manufacturer. This number is used to identify a specific product family or series of components that share common features, characteristics, or functionality. The BPN is usually part of a larger part number or order code that includes additional information, such as variations in packaging, tolerance, voltage ratings, and other specifications.

    MSCSM170
  • Factory Pack QuantityFactory Pack Quantity
    1
  • Manufacturer
    Microchip
  • Brand
    Microchip Technology
  • RoHS
    Details
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    -
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C ~ 175°C (TJ)
  • Subcategory
    Discrete Semiconductor Modules
  • Technology

    In the context of electronic components, the parameter "Technology" refers to the specific manufacturing process and materials used to create the component. This includes the design, construction, and materials used in the production of the component. The technology used can greatly impact the performance, efficiency, and reliability of the electronic component. Different technologies may be used for different types of components, such as integrated circuits, resistors, capacitors, and more. Understanding the technology behind electronic components is important for selecting the right components for a particular application and ensuring optimal performance.

    Si
  • Power - Max

    Power - Max is a parameter that specifies the maximum amount of power that an electronic component can handle without being damaged. It is typically measured in watts and indicates the upper limit of power that can be safely supplied to the component. Exceeding the maximum power rating can lead to overheating, malfunction, or permanent damage to the component. It is important to consider the power-max rating when designing circuits or systems to ensure proper operation and longevity of the electronic components.

    319W (Tc)
  • FET Type

    "FET Type" refers to the type of Field-Effect Transistor (FET) being used in an electronic component. FETs are three-terminal semiconductor devices that can be classified into different types based on their construction and operation. The main types of FETs include Metal-Oxide-Semiconductor FETs (MOSFETs), Junction FETs (JFETs), and Insulated-Gate Bipolar Transistors (IGBTs).Each type of FET has its own unique characteristics and applications. MOSFETs are commonly used in digital circuits due to their high input impedance and low power consumption. JFETs are often used in low-noise amplifiers and switching circuits. IGBTs combine the high input impedance of MOSFETs with the high current-carrying capability of bipolar transistors, making them suitable for high-power applications like motor control and power inverters.When selecting an electronic component, understanding the FET type is crucial as it determines the device's performance and suitability for a specific application. It is important to consider factors such as voltage ratings, current handling capabilities, switching speeds, and power dissipation when choosing the right FET type for a particular circuit design.

    6 N-Channel (3-Phase Bridge)
  • Rds On (Max) @ Id, Vgs

    Rds On (Max) @ Id, Vgs refers to the maximum on-resistance of a MOSFET or similar transistor when it is fully turned on or in the saturation region. It is specified at a given drain current (Id) and gate-source voltage (Vgs). This parameter indicates how much resistance the component will offer when conducting, impacting power loss and efficiency in a circuit. Lower Rds On values are preferred for better performance in switching applications.

    45mOhm @ 30A, 20V
  • Vgs(th) (Max) @ Id

    The parameter "Vgs(th) (Max) @ Id" in electronic components refers to the maximum gate-source threshold voltage at a specified drain current (Id). This parameter is commonly found in field-effect transistors (FETs) and is used to define the minimum voltage required at the gate terminal to turn on the transistor and allow current to flow from the drain to the source. The maximum value indicates the upper limit of this threshold voltage under specified operating conditions. It is an important parameter for determining the proper biasing and operating conditions of the FET in a circuit to ensure proper functionality and performance.

    3.2V @ 2.5mA
  • Input Capacitance (Ciss) (Max) @ Vds

    The parameter "Input Capacitance (Ciss) (Max) @ Vds" in electronic components refers to the maximum input capacitance measured at a specific drain-source voltage (Vds). Input capacitance is a crucial parameter in field-effect transistors (FETs) and power MOSFETs, as it represents the total capacitance at the input terminal of the device. This capacitance affects the device's switching speed and overall performance, as it influences the time required for charging and discharging during operation. Manufacturers provide this parameter to help designers understand the device's input characteristics and make informed decisions when integrating it into a circuit.

    3300pF @ 1000V
  • Gate Charge (Qg) (Max) @ Vgs

    Gate Charge (Qg) (Max) @ Vgs refers to the maximum amount of charge that must be supplied to the gate of a MOSFET or similar device to fully turn it on, measured at a specific gate-source voltage (Vgs). This parameter is crucial for understanding the switching characteristics of the device, as it influences the speed at which the gate can charge and discharge. A higher gate charge value often implies slower switching speeds, which can impact the efficiency of high-frequency applications. This parameter is typically specified in nanocoulombs (nC) in the component's datasheet.

    178nC @ 20V
  • Drain to Source Voltage (Vdss)

    The Drain to Source Voltage (Vdss) is a key parameter in electronic components, particularly in field-effect transistors (FETs) such as MOSFETs. It refers to the maximum voltage that can be applied between the drain and source terminals of the FET without causing damage to the component. Exceeding this voltage limit can lead to breakdown and potentially permanent damage to the device.Vdss is an important specification to consider when designing or selecting components for a circuit, as it determines the operating range and reliability of the FET. It is crucial to ensure that the Vdss rating of the component is higher than the maximum voltage expected in the circuit to prevent failures and ensure proper functionality.In summary, the Drain to Source Voltage (Vdss) is a critical parameter that defines the maximum voltage tolerance of a FET component and plays a significant role in determining the overall performance and reliability of electronic circuits.

    1700V (1.7kV)
  • Product Type

    a group of products which fulfill a similar need for a market segment or market as a whole.

    Discrete Semiconductor Modules
  • FET Feature

    FET Feature refers to the specific characteristics or attributes of a Field-Effect Transistor (FET) that distinguish it from other types of transistors. FETs are semiconductor devices commonly used in electronic circuits for amplification or switching purposes. Some common features of FETs include high input impedance, low output impedance, and voltage-controlled operation. These features make FETs suitable for various applications where precise control of current and voltage is required. Understanding the FET features is essential for selecting the right transistor for a particular circuit design and ensuring optimal performance.

    Silicon Carbide (SiC)
  • Product Category

    a particular group of related products.

    Discrete Semiconductor Modules
0 Similar Products Remaining
MSCSM170TAM45CT3AG Relevant information

Hot Sale
Related Categories
Similar Products
Related Products
Same Manufacturer Products
The following parts include "MSCSM170TAM45CT3AG" in Microchip Technology MSCSM170TAM45CT3AG.
  • Part Number
  • Manufacturer
  • Package
  • Description