National Semiconductor LP3874EMP-2.5
National Semiconductor LP3874EMP-2.5
feed

National Semiconductor LP3874EMP-2.5

Fixed QFN Bulk Regulator IC 4

Manufacturer No:

LP3874EMP-2.5

Utmel No:

1704-LP3874EMP-2.5

Package:

QFN

Usage Grade:

  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive

ECAD Model:

Description:

Enable Fixed PMIC - Series 4 QFN

Quantity:

Unit Price: $0.970960

Ext Price: $0.97

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 1838

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $0.970960

    $0.97

  • 10

    $0.916000

    $9.16

  • 100

    $0.864151

    $86.42

  • 500

    $0.815237

    $407.62

  • 1000

    $0.769091

    $769.09

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
LP3874EMP-2.5 information

Specifications
Product Details
National Semiconductor LP3874EMP-2.5 technical specifications, attributes, parameters and parts with similar specifications to National Semiconductor LP3874EMP-2.5.
  • Type
    Parameter
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    QFN
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Supplier Device Package

    The parameter "Supplier Device Package" in electronic components refers to the physical packaging or housing of the component as provided by the supplier. It specifies the form factor, dimensions, and layout of the component, which are crucial for compatibility and integration into electronic circuits and systems. The supplier device package information typically includes details such as the package type (e.g., DIP, SOP, QFN), number of pins, pitch, and overall size, allowing engineers and designers to select the appropriate component for their specific application requirements. Understanding the supplier device package is essential for proper component selection, placement, and soldering during the manufacturing process to ensure optimal performance and reliability of the electronic system.

    SOT-223-5
  • Product Depth (mm)
    5(mm)
  • Operating Temp Range
    -40C to 85C
  • Mounting Styles
    Surface Mount
  • Package
    Bulk
  • Base Product Number

    "Base Product Number" (BPN) refers to the fundamental identifier assigned to a component by the manufacturer. This number is used to identify a specific product family or series of components that share common features, characteristics, or functionality. The BPN is usually part of a larger part number or order code that includes additional information, such as variations in packaging, tolerance, voltage ratings, and other specifications.

    LP3874
  • Mfr
    National Semiconductor
  • Product Status
    Active
  • Usage Level
    Industrial grade
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Bulk
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C ~ 125°C
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    -
  • Pin Count

    a count of all of the component leads (or pins)

    4
  • Current - Supply (Max)

    The parameter "Current - Supply (Max)" in electronic components refers to the maximum amount of current that a component can draw from a power supply for its operation. This parameter is critical for ensuring that the power supply can adequately meet the demands of the component without causing damage or malfunction. Exceeding this specified maximum current can lead to overheating, reduced performance, or failure of the component. It is essential to consider this value when designing or integrating components into electronic circuits to maintain reliability and functionality.

    15 mA
  • Voltage - Input (Max)

    Voltage - Input (Max) is a parameter in electronic components that specifies the maximum voltage that can be safely applied to the input of the component without causing damage. This parameter is crucial for ensuring the proper functioning and longevity of the component. Exceeding the maximum input voltage can lead to electrical overstress, which may result in permanent damage or failure of the component. It is important to carefully adhere to the specified maximum input voltage to prevent any potential issues and maintain the reliability of the electronic system.

    7V
  • Output Type

    The "Output Type" parameter in electronic components refers to the type of signal or data that is produced by the component as an output. This parameter specifies the nature of the output signal, such as analog or digital, and can also include details about the voltage levels, current levels, frequency, and other characteristics of the output signal. Understanding the output type of a component is crucial for ensuring compatibility with other components in a circuit or system, as well as for determining how the output signal can be utilized or processed further. In summary, the output type parameter provides essential information about the nature of the signal that is generated by the electronic component as its output.

    Fixed
  • Output Configuration

    Output Configuration in electronic components refers to the arrangement or setup of the output pins or terminals of a device. It defines how the output signals are structured and how they interact with external circuits or devices. The output configuration can determine the functionality and compatibility of the component in a circuit design. Common types of output configurations include single-ended, differential, open-drain, and push-pull configurations, each serving different purposes and applications in electronic systems. Understanding the output configuration of a component is crucial for proper integration and operation within a circuit.

    Positive
  • Current - Output

    Current - Output is a parameter in electronic components that refers to the maximum amount of current that can be delivered by the output of the component. It is a crucial specification as it determines the capability of the component to supply power to connected devices or circuits. The current output rating is typically specified in amperes (A) and is important for ensuring that the component can safely and effectively power the load it is connected to without overheating or failing. Designers and engineers must consider the current output rating when selecting components to ensure compatibility and reliable operation of the overall system.

    800mA
  • Control Features

    Control features in electronic components refer to specific functionalities or characteristics that allow users to manage and regulate the operation of the component. These features are designed to provide users with control over various aspects of the component's performance, such as adjusting settings, monitoring parameters, or enabling specific modes of operation. Control features can include options for input/output configurations, power management, communication protocols, and other settings that help users customize and optimize the component's behavior according to their requirements. Overall, control features play a crucial role in enhancing the flexibility, usability, and performance of electronic components in various applications.

    Enable
  • Voltage - Output (Min/Fixed)

    Voltage - Output (Min/Fixed) refers to the minimum fixed output voltage level that an electronic component, such as a voltage regulator or power supply, is designed to provide under specified load conditions. This parameter ensures that the device consistently delivers a reliable voltage that meets the requirements of the connected circuits or components. It is critical for applications where stable and predictable voltage is necessary for proper operation.

    2.5V
  • Number of Regulators

    A regulator is a mechanism or device that controls something such as pressure, temperature, or fluid flow. The voltage regulator keeps the power level stabilized. A regulator is a mechanism or device that controls something such as pressure, temperature, or fluid flow.

    1
  • Protection Features

    Protection features in electronic components refer to the built-in mechanisms or functionalities designed to safeguard the component and the overall system from various external factors or internal faults. These features are crucial for ensuring the reliability, longevity, and safety of the electronic device. Common protection features include overvoltage protection, overcurrent protection, reverse polarity protection, thermal protection, and short-circuit protection. By activating these features when necessary, the electronic component can prevent damage, malfunctions, or hazards that may arise from abnormal operating conditions or unforeseen events. Overall, protection features play a vital role in enhancing the robustness and resilience of electronic components in diverse applications.

    Over Current, Over Temperature, Short Circuit
  • Current - Quiescent (Iq)

    The parameter "Current - Quiescent (Iq)" in electronic components refers to the amount of current consumed by a device when it is in a quiescent or idle state, meaning when it is not actively performing any tasks or operations. This parameter is important because it represents the baseline power consumption of the device even when it is not actively being used. A lower quiescent current (Iq) value is desirable as it indicates that the device is more energy-efficient and will consume less power when not in use, which can help extend battery life in portable devices and reduce overall power consumption in electronic systems. Designers often pay close attention to the quiescent current specification when selecting components for low-power applications or battery-operated devices.

    9 mA
  • Voltage Dropout (Max)

    Voltage Dropout (Max) refers to the minimum voltage difference between the input and output of a voltage regulator or linear power supply needed to maintain proper regulation. It indicates the maximum allowable voltage drop across the device for it to function effectively without dropout. If the input voltage falls below this threshold, the output voltage may drop below the specified level, leading to potential operational issues for connected components. This parameter is critical for ensuring stable and reliable power delivery in electronic circuits.

    0.35V @ 800mA
  • PSRR

    PSRR stands for Power Supply Rejection Ratio. It is a measure of how well a device, such as an amplifier or a voltage regulator, can reject variations in the power supply voltage. A high PSRR value indicates that the device is able to maintain its performance even when the power supply voltage fluctuates. This parameter is important in ensuring stable and reliable operation of electronic components, especially in applications where the power supply voltage may not be perfectly regulated. A good PSRR helps to minimize noise and interference in the output signal of the device.

    73dB ~ 57dB (120Hz)
  • Voltage - Output (Max)

    Voltage - Output (Max) is a parameter that specifies the maximum voltage level that can be delivered by an electronic component, such as an integrated circuit or a power supply. It indicates the highest voltage that the component is designed to provide at its output terminal under normal operating conditions. This parameter is crucial for determining the compatibility of the component with other parts of the circuit and ensuring that the voltage requirements are met for proper functionality. Designers and engineers use this specification to ensure that the component can safely deliver the required voltage without exceeding its maximum output capability.

    -
  • Screening Level

    In electronic components, the term "Screening Level" refers to the level of testing and inspection that a component undergoes to ensure its reliability and performance. This process involves subjecting the component to various tests, such as temperature cycling, burn-in, and electrical testing, to identify any defects or weaknesses that could affect its functionality. The screening level is typically determined based on the application requirements and the criticality of the component in the system. Components that undergo higher screening levels are generally more reliable but may also be more expensive. Overall, the screening level helps to ensure that electronic components meet the necessary quality standards for their intended use.

    Industrial
  • Product Length (mm)

    The parameter "Product Length (mm)" in electronic components refers to the physical length of the component, typically measured in millimeters. This measurement is important for determining the size and dimensions of the component, which is crucial for fitting it into a circuit board or enclosure. It helps in ensuring proper alignment and spacing within the overall design of the electronic system. Manufacturers provide this specification to assist engineers and designers in selecting components that will fit and function correctly within their intended application.

    7(mm)
  • Product Height (mm)

    Product Height (mm) in electronic components refers to the measurement of the component's vertical dimension. It indicates how tall the component is when installed in a circuit or system. This parameter is crucial for determining compatibility with enclosures, ensuring adequate space for components on printed circuit boards, and facilitating proper airflow and cooling in electronic designs.

    0.9(mm)
0 Similar Products Remaining

LP3874EMP-2.5 Overview

In the case of Bulk cases, the regulater IC is delivered. Packaging of the Liner regulator IC takes the form of a QFN case. Fixed is the Voltage Regulator Chip's output type. Linear IC consists of 1 battery regulators. The range of operating temperatures of Surface Mount are programmable in the Voltage Regulator Chip, so that the temperature can be varied as desired. Keeping the temperature at -40°C ~ 125°C degrees is necessary for this regulator to function. There is an output function of Positive configured for this regulator. Currently, 800mA are being output by it at the moment. The sum of the pins in this unit is 4. The phone is a member of the - Series.

LP3874EMP-2.5 Features

Over Current, Over Temperature, Short Circuit Protection Features
Positive Output Configuration
Fixed Output Type

LP3874EMP-2.5 Applications

There are a lot of National Semiconductor
LP3874EMP-2.5 Linear Voltage Regulators applications.


  • Switching regulator
  • Multiple-power supply system
  • Digital audio player
  • Digital TV
  • Smartcard
  • Industrial equipment
  • DVD and CD-ROM drive
  • Quick charge protocols
  • Measurement and control euipment
  • Aging system
LP3874EMP-2.5 Relevant information

Hot Sale
Related Categories
Similar Products
Popular Search
Related Products
Same Manufacturer Products
The following parts include "LP3874EMP-2.5" in National Semiconductor LP3874EMP-2.5.
  • Part Number
  • Manufacturer
  • Package
  • Description