Arcol HS505R6F
Arcol HS505R6F
feed

Arcol HS505R6F

Manufacturer No:

HS505R6F

Manufacturer:

Arcol

Utmel No:

190-HS505R6F

Package:

Aluminium Housed

ECAD Model:

Description:

HS505R6F datasheet pdf and Chip Resistor - Surface Mount product details from Arcol stock available at Utmel

Quantity:

Unit Price: $1.827964

Ext Price: $1.83

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 200

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $1.827964

    $1.83

  • 10

    $1.724494

    $17.24

  • 100

    $1.626881

    $162.69

  • 500

    $1.534794

    $767.40

  • 1000

    $1.447919

    $1,447.92

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
HS505R6F information

Specifications
Arcol HS505R6F technical specifications, attributes, parameters and parts with similar specifications to Arcol HS505R6F.
  • Type
    Parameter
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    Aluminium Housed
  • Voltage Rating (DC)
    1.25 kV
  • RoHS
    Compliant
  • Dimensions
    49.1 x 28 x 14.8mm
  • Maximum Temperature Coefficient
    +100ppm/°C
  • Qualification
    MIL-PRF-18546
  • Voltage, Rating
    1.25kV
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    HS50
  • Tolerance

    In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.

    1 %
  • Termination

    Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.

    Lug
  • Temperature Coefficient

    The resistance-change factor per degree Celsius of temperature change is called the temperature coefficient of resistance. This factor is represented by the Greek lower-case letter “alpha” (α). A positive coefficient for a material means that its resistance increases with an increase in temperature.

    100 ppm/°C
  • Resistance

    Resistance is a fundamental property of electronic components that measures their opposition to the flow of electric current. It is denoted by the symbol "R" and is measured in ohms (Ω). Resistance is caused by the collisions of electrons with atoms in a material, which generates heat and reduces the flow of current. Components with higher resistance will impede the flow of current more than those with lower resistance. Resistance plays a crucial role in determining the behavior and functionality of electronic circuits, such as limiting current flow, voltage division, and controlling power dissipation.

    5.6 Ω
  • Composition

    Parameter "Composition" in electronic components refers to the specific materials and substances used in the construction of the component. It encompasses the chemical and physical elements that make up the component, influencing its electrical, thermal, and mechanical properties. The composition can affect the performance, reliability, and durability of the component in various applications. Understanding the composition is essential for optimizing the design and functionality of electronic devices.

    Wire resistor
  • Power Rating

    The "Power Rating" of an electronic component refers to the maximum amount of power that the component can handle or dissipate without being damaged. It is typically measured in watts and is an important specification to consider when designing or selecting components for a circuit. Exceeding the power rating of a component can lead to overheating, malfunction, or even permanent damage. It is crucial to ensure that the power rating of each component in a circuit is sufficient to handle the power levels expected during normal operation to maintain the reliability and longevity of the electronic system.

    50 W
  • Technology

    In the context of electronic components, the parameter "Technology" refers to the specific manufacturing process and materials used to create the component. This includes the design, construction, and materials used in the production of the component. The technology used can greatly impact the performance, efficiency, and reliability of the electronic component. Different technologies may be used for different types of components, such as integrated circuits, resistors, capacitors, and more. Understanding the technology behind electronic components is important for selecting the right components for a particular application and ensuring optimal performance.

    Aluminium
  • Resistor Type

    The parameter "Resistor Type" in electronic components refers to the specific material and construction of a resistor that determines its electrical properties and performance characteristics. There are various types of resistors available, such as carbon film, metal film, wirewound, and thick film resistors, each with its own advantages and applications. The resistor type affects factors like tolerance, temperature coefficient, power rating, and stability, which are important considerations when selecting a resistor for a particular circuit. Choosing the right resistor type is crucial for ensuring proper functionality and reliability of electronic devices and circuits.

    High Power
  • Termination Style

    "Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.

    Axial
  • Overall Height

    Overall Height is a parameter that refers to the total vertical measurement of an electronic component, typically measured from the bottom of the component to the highest point on top. It is an important specification to consider when designing or selecting components for a project, as it determines the amount of space the component will occupy within a circuit or device. Understanding the overall height of electronic components is crucial for ensuring proper fit and clearance within the overall system design. Manufacturers provide this information in datasheets to help engineers and designers make informed decisions during the product development process.

    14.8mm
  • Resistance Tolerance

    Tolerance is the percentage of error in the resistor's resistance, or how much more or less you can expect a resistor's actual measured resistance to be from its stated resistance. A gold tolerance band is 5% tolerance, silver is 10%, and no band at all would mean a 20% tolerance.

    ± 1%
  • Overall Length

    Overall Length in electronic components refers to the total length of the component, typically measured from one end to the other. This parameter is important for determining the physical size and dimensions of the component, which can impact its compatibility with a circuit board or housing. The overall length may vary depending on the type of component, such as resistors, capacitors, or integrated circuits, and is often specified in datasheets to ensure proper fit and functionality within a given electronic system. Designers and engineers consider the overall length when selecting components to ensure they meet the space requirements and mechanical constraints of the application.

    49.1mm
  • Product Length

    Product Length in electronic components refers to the physical measurement of an electronic part from one end to the other along its longest axis. It is a crucial specification that helps in determining compatibility with circuit boards, enclosures, and other components. Understanding the Product Length is essential for ensuring proper placement and assembly within electronic designs.

    49.1mm
  • Product Width

    In electronic components, "Product Width" typically refers to the physical width or diameter of the component. It is an important parameter as it determines the size and form factor of the component, which in turn can impact its compatibility with other components or devices. The product width measurement is usually specified in millimeters or inches and is crucial for ensuring proper fit and alignment within a circuit or system. Designers and engineers often consider the product width along with other dimensions to ensure that the component will function correctly within the intended application.

    28mm
  • Product Height

    Product Height in electronic components refers to the vertical measurement of the component when it is oriented in a specific way, typically from the bottom to the top. This parameter is important for determining the physical dimensions of the component and how it will fit within a system or device. It is often specified in millimeters or inches and is crucial for ensuring proper clearance and spacing within a circuit board or enclosure. Understanding the product height helps designers and engineers plan for the overall size and layout of a product, ensuring that all components fit together properly and function as intended.

    14.8mm
0 Similar Products Remaining