AVX Corporation VCAS060330A650RP
AVX Corporation VCAS060330A650RP
feed

AVX Corporation VCAS060330A650RP

Manufacturer No:

VCAS060330A650RP

Manufacturer:

AVX Corporation

Utmel No:

244-VCAS060330A650RP

Package:

-

ECAD Model:

Description:

VARISTOR 41V 30A 0603

Quantity:

Unit Price: $0.120022

Ext Price: $0.12

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 120000

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $0.120022

    $0.12

  • 10

    $0.113228

    $1.13

  • 100

    $0.106819

    $10.68

  • 500

    $0.100773

    $50.39

  • 1000

    $0.095069

    $95.07

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
VCAS060330A650RP information

Specifications
Documents & Media
Product Details
Product Comparison
AVX Corporation VCAS060330A650RP technical specifications, attributes, parameters and parts with similar specifications to AVX Corporation VCAS060330A650RP.
  • Type
    Parameter
  • Factory Lead Time
    9 Weeks
  • Contact Plating

    Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.

    Tin
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Surface Mount
  • Terminal Shape

    Terminal Shape in electronic components refers to the physical design of the connection points on the component that allow for electrical connections to be made. These terminals can come in various shapes such as pins, leads, pads, or terminals with specific configurations like surface mount or through-hole. The terminal shape is important as it determines how the component can be mounted on a circuit board or connected to other components. Different terminal shapes are used based on the specific requirements of the electronic circuit design and manufacturing process.

    WRAPAROUND
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tape & Reel (TR)
  • Published
    2011
  • Tolerance

    In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.

    10%
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    2
  • Termination

    Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.

    SMD/SMT
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • HTS Code

    HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.

    8533.40.40.00
  • Capacitance

    Capacitance is a fundamental electrical property of electronic components that describes their ability to store electrical energy in the form of an electric field. It is measured in farads (F) and represents the ratio of the amount of electric charge stored on a component to the voltage across it. Capacitors are passive components that exhibit capacitance and are commonly used in electronic circuits for various purposes such as filtering, energy storage, timing, and coupling. Capacitance plays a crucial role in determining the behavior and performance of electronic systems by influencing factors like signal propagation, frequency response, and power consumption.

    125pF
  • Voltage - Rated DC

    Voltage - Rated DC is a parameter that specifies the maximum direct current (DC) voltage that an electronic component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component in a circuit. Exceeding the rated DC voltage can lead to overheating, breakdown, or even permanent damage to the component. It is important to carefully consider this parameter when designing or selecting components for a circuit to prevent any potential issues related to voltage overload.

    30V
  • Packing Method

    The packing method in electronic components refers to the technique used to package and protect the component during shipping and handling. It encompasses various forms including tape and reel, tray, tube, or bulk packaging, each suited for different types of components and manufacturing processes. The choice of packing method can affect the ease of handling, storage, and the efficiency of assembly in automated processes. Additionally, it plays a crucial role in ensuring the reliability and integrity of the components until they are used in electronic devices.

    TR, 7 INCH
  • Depth

    In electronic components, "Depth" typically refers to the measurement of the distance from the front to the back of the component. It is an important parameter to consider when designing or selecting components for a project, as it determines how much space the component will occupy within a circuit or device. The depth of a component can impact the overall size and layout of the circuit board or enclosure in which it will be installed. It is usually specified in millimeters or inches and is crucial for ensuring proper fit and functionality within the intended application.

    800μm
  • Resistor Type

    The parameter "Resistor Type" in electronic components refers to the specific material and construction of a resistor that determines its electrical properties and performance characteristics. There are various types of resistors available, such as carbon film, metal film, wirewound, and thick film resistors, each with its own advantages and applications. The resistor type affects factors like tolerance, temperature coefficient, power rating, and stability, which are important considerations when selecting a resistor for a particular circuit. Choosing the right resistor type is crucial for ensuring proper functionality and reliability of electronic devices and circuits.

    VARISTOR
  • Reference Standard

    In the context of electronic components, the term "Reference Standard" typically refers to a specific set of guidelines, specifications, or requirements that serve as a benchmark for evaluating the quality, performance, and characteristics of the component. These standards are established by organizations such as the International Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers (IEEE), or specific industry bodies.Reference standards help ensure consistency and interoperability among different components, as they provide a common framework for manufacturers, designers, and users to adhere to. They outline parameters such as electrical properties, mechanical dimensions, environmental conditions, and safety considerations that the component must meet to be considered compliant.By referencing these standards, manufacturers can design and produce components that meet industry-recognized criteria, which in turn helps users select the right components for their applications with confidence. Adhering to reference standards also facilitates regulatory compliance and promotes overall quality and reliability in electronic systems.

    AEC-Q200
  • Voltage - Rated AC

    Voltage - Rated AC is a parameter that specifies the maximum alternating current (AC) voltage that an electronic component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component within an electrical circuit. It is typically expressed in volts (V) and helps users determine the compatibility of the component with the voltage levels present in the circuit. Exceeding the rated AC voltage can lead to overheating, malfunction, or permanent damage to the component, so it is important to adhere to this specification when designing or using electronic systems.

    21V
  • Case Code (Metric)

    Case Code (Metric) in electronic components refers to a standardized system that specifies the dimensions of surface-mount devices (SMD) in millimeters, consisting of a four-digit number where the first two digits represent the width and the last two digits represent the height of the component, measured in tenths of a millimeter. The metric case codes are standardized by organizations such as the EIA and IEC, and are often compared to the Imperial code which uses inches, allowing for easier identification and selection of components across different regions and industries. This coding system is widely used in the design and manufacturing of electronic devices, particularly in applications requiring compact and efficient component layouts, and is essential for engineers and designers to ensure proper component selection and facilitate the assembly process in electronic manufacturing.

    1608
  • Rated Power Dissipation (P)

    Rated Power Dissipation (P) is a crucial parameter in electronic components that indicates the maximum amount of power the component can safely dissipate without being damaged. It is typically measured in watts and is important for determining the component's thermal management requirements. Exceeding the rated power dissipation can lead to overheating, reduced performance, or even permanent damage to the component. Designers must carefully consider the rated power dissipation when selecting and using electronic components to ensure reliable operation within specified limits.

    0.002W
  • Case Code (Imperial)

    The term "Case Code (Imperial)" in electronic components refers to a standardized system used to specify the physical dimensions and package types of components, particularly capacitors and resistors. This code helps manufacturers and engineers identify the size and form factor of the component, ensuring compatibility with circuit designs and PCB layouts. In the context of electronic components, the Case Code (Imperial) typically follows a numerical format that indicates the length and width of the component in inches. For example, a Case Code of 1206 signifies a component that measures 0.12 inches by 0.06 inches. This coding system is essential for selecting the correct components for specific applications, as it provides a quick reference to the physical characteristics of the part, including its footprint and mounting style.

    0603
  • Max Voltage Rating (AC)

    The parameter "Max Voltage Rating (AC)" in electronic components refers to the maximum alternating current (AC) voltage that the component can safely handle without being damaged. This rating is important for ensuring the component's longevity and reliability in a circuit. Exceeding the maximum voltage rating can lead to overheating, breakdown, or even permanent damage to the component. It is crucial to select components with voltage ratings that are suitable for the intended application to prevent malfunctions or safety hazards in the circuit.

    21V
  • Terminal Placement

    Terminal Placement in electronic components refers to the physical location of the terminals or connection points on the component where external electrical connections are made. The placement of terminals is crucial for ensuring proper connectivity and functionality of the component within a circuit. It is important to consider factors such as spacing, orientation, and accessibility of terminals to facilitate easy installation and maintenance. Proper terminal placement also helps in reducing the risk of short circuits or other electrical issues. Overall, terminal placement plays a significant role in the design and usability of electronic components.

    DUAL ENDED
  • Max Voltage Rating (DC)

    The parameter "Max Voltage Rating (DC)" in electronic components refers to the maximum direct current (DC) voltage that the component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component within an electrical circuit. Exceeding the maximum voltage rating can lead to breakdown or failure of the component, potentially causing damage to the entire circuit. It is important to carefully consider and adhere to the specified max voltage rating when designing or working with electronic circuits to prevent any potential risks or malfunctions.

    30V
  • Clamping Voltage

    Clamping voltage is a term used in electronic components, particularly in devices like diodes and transient voltage suppressors. It refers to the maximum voltage level at which the component can effectively limit or clamp the voltage across its terminals. When the voltage across the component exceeds the clamping voltage, the component conducts and effectively limits the voltage to that level, protecting the circuit from overvoltage conditions. Clamping voltage is an important parameter to consider when selecting components for applications where voltage spikes or surges may occur, as it determines the level at which the component will start to protect the circuit.

    67V
  • Max Surge Current

    Surge current is a peak non repetitive current. Maximum (peak or surge) forward current = IFSM or if(surge), the maximum peak amount of current the diode is able to conduct in forward bias mode.

    30A
  • Voltage Tolerance

    The voltage tolerance level for the electrical auxiliaries is defined by the standard. The maximum and minimum nominal voltages are defined by the tolerance level.

    10%
  • Varistor Voltage

    A varistor is an electronic component that is used to protect circuits from overvoltage conditions. The varistor voltage, also known as the "clamping voltage" or "breakdown voltage," is the voltage level at which the varistor begins to conduct significantly and divert excess current away from the circuit. When the voltage across the varistor exceeds its varistor voltage, the varistor's resistance decreases rapidly, allowing it to absorb the excess energy and protect the circuit components. Varistor voltage is an important parameter to consider when selecting a varistor for a specific application, as it determines the level of overvoltage protection provided by the component.

    41V
  • Clamping Current

    Clamping current refers to the maximum current that can safely pass through a protective device, such as a surge protector or a transient voltage suppressor, before it begins to conduct and limit the voltage. This current level is crucial for protecting sensitive electronic components from damage during voltage spikes or surges. It ensures that the device will divert excessive current away from the circuit, thereby preventing potential failure of the components being protected.

    1A
  • Energy Absorbing Capacity-Max

    Energy Absorbing Capacity-Max is a parameter that refers to the maximum amount of energy that an electronic component can absorb or dissipate without being damaged. This parameter is crucial in determining the component's ability to withstand transient voltage spikes, power surges, or other forms of electrical stress. Components with a higher Energy Absorbing Capacity-Max rating are more resilient and can better protect the overall circuit from damage. It is typically measured in joules or watts and is an important consideration in the design and selection of electronic components for applications where protection against electrical disturbances is critical.

    0.1 J
  • Length
    1.6mm
  • Width
    800μm
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining
Download datasheets and manufacturer documentation for AVX Corporation VCAS060330A650RP.

Product Description

AVX Corporation's VCAS060330A650RP Varistor

The AVX Corporation's VCAS060330A650RP is a surface-mount varistor designed for circuit protection applications. This component is part of AVX's extensive range of varistors, which are known for their high reliability and robust performance in various electrical systems.

Features

  • Compact Design: The varistor is available in a 0603 (1608 metric) case size, making it ideal for space-constrained applications.
  • High Clamping Voltage: With a clamping voltage of 67V, this varistor provides effective protection against voltage spikes and surges.
  • High Energy Absorption Capacity: The maximum energy absorbing capacity is 0.1 J, ensuring reliable operation under transient conditions.
  • Lead-Free and RoHS Compliant: Manufactured with lead-free materials and compliant with ROHS3 standards, this varistor meets the stringent requirements of modern electronics.
  • Surface Mount Technology (SMT): Designed for easy integration into SMT assembly processes, reducing manufacturing complexity.
  • Dual Ended Terminations: The dual-ended wraparound terminal shape facilitates reliable connections and easy mounting.

Applications

Primary Applications:

  1. Circuit Protection in Electronic Devices: The VCAS060330A650RP is primarily used to protect electronic circuits from voltage spikes, surges, and electrical transients.
  2. Automotive Electronics: Its compliance with AEC-Q200 standards makes it suitable for use in automotive systems where reliability is crucial.

Secondary Applications:

  1. Industrial Control Systems: The varistor's high energy absorption capacity makes it useful in industrial control systems where transient overvoltages are common.
  2. Telecommunications Equipment: Its ability to handle high surge currents (up to 30A) makes it suitable for telecommunications equipment that often experience electrical transients.

Alternative Parts

While the VCAS060330A650RP is a specific product with unique characteristics, some alternative parts that may serve similar functions include:

  1. AVX Corporation's VCAS060330A650RP (Alternative Case Size): The same varistor but in different case sizes such as 0805 or 1206.
  2. Other Manufacturers' Varistors: Products from other manufacturers like Littelfuse or Wurth Electronics that offer similar specifications and functionality.

Embedded Modules

The VCAS060330A650RP varistor is commonly used in various embedded modules designed for circuit protection:

  1. Power Supply Modules: Many power supply modules incorporate varistors like the VCAS060330A650RP to protect against voltage spikes during startup or shutdown.
  2. Motor Control Systems: In motor control systems, this varistor helps protect against electrical transients generated by motor operation.
  3. Communication Modules: Communication modules such as those used in IoT devices often include varistors like the VCAS060330A650RP to safeguard against electrical surges.

In summary, the AVX Corporation's VCAS060330A650RP varistor is an essential component for any electronic system requiring robust circuit protection against transient overvoltages and electrical surges. Its compact design, high clamping voltage, and lead-free construction make it an ideal choice for modern electronics applications.

The three parts on the right have similar specifications to AVX Corporation & VCAS060330A650RP.