

Bourns Inc. PM3604-33-RC
Manufacturer No:
PM3604-33-RC
Tiny WHSLManufacturer:
Utmel No:
337-PM3604-33-RC
Package:
Nonstandard
Datasheet:
Description:
INDUCT ARRAY 2 COIL 33UH SMD
Quantity:
Unit Price: $1.373527
Ext Price: $1.37
Delivery:





Payment:











In Stock : 1382
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$1.373527
$1.37
10
$1.295780
$12.96
100
$1.222434
$122.24
500
$1.153240
$576.62
1000
$1.087962
$1,087.96
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Factory Lead Time16 Weeks
- Mount
In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.
Surface Mount - Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Surface Mount - Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
Nonstandard - Terminal Shape
Terminal Shape in electronic components refers to the physical design of the connection points on the component that allow for electrical connections to be made. These terminals can come in various shapes such as pins, leads, pads, or terminals with specific configurations like surface mount or through-hole. The terminal shape is important as it determines how the component can be mounted on a circuit board or connected to other components. Different terminal shapes are used based on the specific requirements of the electronic circuit design and manufacturing process.
WRAPAROUND - Number of Pins4
- Shape/Size Description
Shape/Size Description in electronic components refers to the physical dimensions and geometric characteristics of a component. This includes parameters such as length, width, height, and overall form factor, which can affect how the component fits within a circuit board or electronic enclosure. Proper identification of Shape/Size Description is crucial for ensuring compatibility with other components and for optimizing space in design layouts.
RECTANGULAR PACKAGE - Core Material
Core materials are produced in a variety of forms including end-grain balsa wood, PVC foam, urethane foam, non-woven core fabrics, and various types of honeycomb materials.
Ferrite - Special FeaturesPARALLEL CONNECTED
- Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-55°C~125°C - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Tape & Reel (TR) - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
PM3600 - Published2009
- Size / Dimension
In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.
0.550Lx0.452W 13.97mmx11.48mm - Tolerance
In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.
±20% - Pbfree Code
The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.
yes - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
1 (Unlimited) - Number of Terminations4
- Termination
Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.
SMD/SMT - ECCN Code
An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.
EAR99 - Resistance
Resistance is a fundamental property of electronic components that measures their opposition to the flow of electric current. It is denoted by the symbol "R" and is measured in ohms (Ω). Resistance is caused by the collisions of electrons with atoms in a material, which generates heat and reduces the flow of current. Components with higher resistance will impede the flow of current more than those with lower resistance. Resistance plays a crucial role in determining the behavior and functionality of electronic circuits, such as limiting current flow, voltage division, and controlling power dissipation.
78mOhm - Shielding
Shielding in electronic components refers to the practice of enclosing or surrounding sensitive electronic circuits or components with a conductive material to protect them from electromagnetic interference (EMI) or radio frequency interference (RFI). The shielding material acts as a barrier that blocks or absorbs unwanted electromagnetic signals, preventing them from affecting the performance of the electronic device. Shielding can be achieved using materials such as metal enclosures, conductive coatings, or shielding tapes. Proper shielding is essential in electronic design to ensure the reliable operation of electronic devices in environments where electromagnetic interference is present.
NO - Number of Functions2
- Depth
In electronic components, "Depth" typically refers to the measurement of the distance from the front to the back of the component. It is an important parameter to consider when designing or selecting components for a project, as it determines how much space the component will occupy within a circuit or device. The depth of a component can impact the overall size and layout of the circuit board or enclosure in which it will be installed. It is usually specified in millimeters or inches and is crucial for ensuring proper fit and functionality within the intended application.
13.97mm - Base Part Number
The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.
PM3604 - Military Standard
Military Standard in electronic components refers to a set of guidelines and specifications established by the military for the design, manufacturing, and testing of electronic devices used in military applications. These standards ensure that the components meet specific requirements for reliability, durability, performance, and environmental conditions. Components that meet military standards are often more rugged and capable of withstanding harsh operating conditions such as extreme temperatures, vibrations, and electromagnetic interference. Adhering to military standards helps to ensure the quality and consistency of electronic components used in critical military systems and applications.
Not - Inductance
Inductance is a property of an electrical component that quantifies its ability to store energy in a magnetic field when electric current flows through it. It is measured in henries and indicates how much voltage is induced in the component as a result of a change in current. Inductance is an essential characteristic in coils, inductors, and transformers, affecting the behavior of electrical circuits, particularly in alternating current applications. Higher inductance values usually correlate with larger coils or more turns of wire in the component.
33 μH - Max DC Current
Max DC Current refers to the maximum amount of direct current (DC) that an electronic component can safely handle without being damaged. This parameter is crucial for determining the operational limits of the component and ensuring that it functions within its specified range. Exceeding the maximum DC current rating can lead to overheating, performance degradation, or even permanent damage to the component. It is important to carefully consider this parameter when designing circuits or selecting components to ensure reliable and safe operation.
1.6A - Inductor Application
Inductor application refers to the various uses of inductors in electronic circuits. Inductors are passive components that store energy in a magnetic field when electrical current passes through them. They are commonly used for filtering, energy storage, and in oscillators. Inductors also play a crucial role in inductive coupling and in transforming voltage levels in power supplies and signal processing applications. Their ability to resist changes in current makes them essential for managing current flow and reducing noise in electronic systems.
POWER INDUCTOR - Terminal Placement
Terminal Placement in electronic components refers to the physical location of the terminals or connection points on the component where external electrical connections are made. The placement of terminals is crucial for ensuring proper connectivity and functionality of the component within a circuit. It is important to consider factors such as spacing, orientation, and accessibility of terminals to facilitate easy installation and maintenance. Proper terminal placement also helps in reducing the risk of short circuits or other electrical issues. Overall, terminal placement plays a significant role in the design and usability of electronic components.
ON CIRCLE - Inductor Type
The parameter "Inductor Type" in electronic components refers to the specific design or construction of an inductor. Inductors are passive electronic components that store energy in a magnetic field when current flows through them. The type of inductor can vary based on factors such as the core material, winding configuration, and overall construction. Common types of inductors include air core, ferrite core, toroidal, and solenoid. Each type has its own characteristics and is chosen based on factors such as inductance value, current handling capability, and frequency response. Selecting the right inductor type is crucial for achieving desired performance in electronic circuits.
GENERAL PURPOSE INDUCTOR - DC Resistance (DCR) - Parallel
DC Resistance (DCR) - Parallel refers to the measurement of resistance in an electronic component when it is subjected to direct current in a parallel configuration. In this configuration, the total resistance is calculated by taking the reciprocal of the sum of the reciprocals of individual resistances. This parameter is crucial for understanding how components behave in a circuit, as it affects current distribution and overall circuit performance. Lower DCR values typically indicate better conductivity, which can lead to increased efficiency in electronic applications.
78mOhm Max - DC Current
DC current refers to the flow of electric charge in a circuit in a constant, unidirectional manner. It is the steady current that flows through a circuit without changing direction over time. DC current is typically measured in amperes (A) and is essential for powering electronic components such as resistors, capacitors, and transistors. Understanding the DC current rating of a component is crucial for ensuring proper functionality and preventing damage due to overcurrent. It is important to consider the maximum DC current that a component can handle to avoid overheating and potential failure.
1.6A - Inductance - Parallel
Inductance in parallel refers to the combined inductance of multiple inductors connected in parallel within an electronic circuit. The total inductance decreases as more inductors are added, contrasting with the behavior of resistors in parallel. The formula for calculating the total inductance of inductors in parallel is the reciprocal of the sum of the reciprocals of the individual inductances. This configuration is often used to achieve specific inductance values or to distribute current among multiple pathways, enhancing circuit performance.
33 μH - Inductance - Series
Inductance - Series is a parameter that describes the inductance of a component when it is connected in series with other components in an electronic circuit. Inductance is a property of an electrical conductor that resists changes in current flow, creating a magnetic field when current passes through it. When components are connected in series, their individual inductances add up, affecting the overall impedance and behavior of the circuit. Understanding the inductance in series is important for designing circuits with the desired performance characteristics and for analyzing the behavior of the circuit under different operating conditions.
132 μH - Number of Coils2
- DC Resistance (DCR) - Series
The parameter "DC Resistance (DCR) - Series" in electronic components refers to the resistance of the component to the flow of direct current (DC) through it when connected in series with a circuit. It is measured in ohms and indicates the opposition to the flow of current within the component itself. A lower DCR value indicates that the component has less resistance and will allow more current to flow through it. Understanding the DCR of a component is important for designing circuits and ensuring proper functionality and efficiency.
310mOhm Max - Current Rating - Series
Current Rating - Series is a parameter used to specify the maximum amount of electrical current that a series of electronic components can safely handle when connected in a circuit. It is typically expressed in amperes (A) and is crucial for ensuring the components do not overheat or get damaged due to excessive current flow. The current rating helps designers and engineers select the appropriate components for a given application to ensure reliable and safe operation. It is important to carefully consider the current rating of each component in a series to prevent any potential failures or hazards in the circuit.
800mA - Inductance - Connected In Series
Inductance connected in series refers to the total inductance achieved when multiple inductors are arranged in a series configuration. In this setup, the overall inductance is equal to the sum of the individual inductances of each inductor. This arrangement increases the inductive reactance, which can affect the behavior of the circuit, especially in alternating current applications. The resulting inductance can be calculated using the formula L_total = L1 + L2 + L3 + ... + Ln, where L1, L2, L3, and Ln are the inductances of the individual inductors.
132μH - Height0.265 6.73mm
- RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
ROHS3 Compliant - Lead Free
Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.
Lead Free