

Broadcom AUV3-SS32-0RU0K
Manufacturer No:
AUV3-SS32-0RU0K
Tiny WHSLManufacturer:
Utmel No:
354-AUV3-SS32-0RU0K
Package:
3535
Description:
LED Single Chip Ultra Violet 1000mA 2-Pin SMD T/R
Quantity:
Delivery:





Payment:











In Stock : Please Inquire
Please send RFQ , we will respond immediately.
United States
China
Canada
Japan
Russia
Germany
United Kingdom
Singapore
Italy
Hong Kong(China)
Taiwan(China)
France
Korea
Mexico
Netherlands
Malaysia
Austria
Spain
Switzerland
Poland
Thailand
Vietnam
India
United Arab Emirates
Afghanistan
Åland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua & Barbuda
Argentina
Armenia
Aruba
Australia
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius and Saba
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Cayman Islands
Central African Republic
Chad
Chile
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo
Congo (DRC)
Cook Islands
Costa Rica
Côte d’Ivoire
Croatia
Cuba
Curaçao
Cyprus
Czechia
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
French Guiana
French Polynesia
Gabon
Gambia
Georgia
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao(China)
Madagascar
Malawi
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Authority
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Portugal
Puerto Rico
Qatar
Réunion
Romania
Rwanda
Samoa
San Marino
São Tomé & Príncipe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Sudan
Sri Lanka
St Helena, Ascension, Tristan da Cunha
St. Barthélemy
St. Kitts & Nevis
St. Lucia
St. Martin
St. Pierre & Miquelon
St. Vincent & Grenadines
Sudan
Suriname
Svalbard & Jan Mayen
Sweden
Syria
Tajikistan
Tanzania
Timor-Leste
Togo
Tokelau
Tonga
Trinidad & Tobago
Tunisia
Turkey
Turkmenistan
Turks & Caicos Islands
Tuvalu
U.S. Outlying Islands
U.S. Virgin Islands
Uganda
Ukraine
Uruguay
Uzbekistan
Vanuatu
Vatican City
Venezuela
Wallis & Futuna
Yemen
Zambia
Zimbabwe
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Surface Mount - Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
3535 - PackageBox
- MfrSchneider Electric
- Product StatusObsolete
- Lens Dimensions2.8 x 1.85 mm
- LED MaterialInGaN
- Mounting OrientationTop Mount
- Supplier PackageSMD
- Maximum Forward Current1000 mA
- Lens Shape TypeDome
- Package Type3535
- Factory Pack QuantityFactory Pack Quantity1000
- Mounting StylesSMD/SMT
- Lens ShapeDome
- ManufacturerBroadcom Limited
- BrandBroadcom / Avago
- If - Forward Current700 mA
- Wavelength/Color Temperature385 nm
- RoHSDetails
- Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
- - Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-10 to 85 °C - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
MouseReel - TypeChip LED
- ColorUltra Violet
- SubcategoryLEDs
- Power Rating
The "Power Rating" of an electronic component refers to the maximum amount of power that the component can handle or dissipate without being damaged. It is typically measured in watts and is an important specification to consider when designing or selecting components for a circuit. Exceeding the power rating of a component can lead to overheating, malfunction, or even permanent damage. It is crucial to ensure that the power rating of each component in a circuit is sufficient to handle the power levels expected during normal operation to maintain the reliability and longevity of the electronic system.
4000 mW - Orientation
In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.
Top View - Pin Count
a count of all of the component leads (or pins)
2 - Voltage - Forward (Vf) (Typ)
The parameter "Voltage - Forward (Vf) (Typ)" in electronic components refers to the typical forward voltage drop across the component when it is conducting current in the forward direction. It is a crucial characteristic of components like diodes and LEDs, indicating the minimum voltage required for the component to start conducting current. The forward voltage drop is typically specified as a typical value because it can vary slightly based on factors such as temperature and manufacturing tolerances. Designers use this parameter to ensure that the component operates within its specified voltage range and to calculate power dissipation in the component.
3.45V - Viewing Angle
the angle at which a display can be viewed with acceptable visual performance.
35 ° - Product Type
a group of products which fulfill a similar need for a market segment or market as a whole.
LED - High Power - Illumination Color
Illumination Color refers to the specific color of light emitted by an LED or display component when it is activated. It is an important parameter as it affects the visibility and aesthetics of the electronic device. Common illumination colors include red, green, blue, yellow, and white, among others. The chosen illumination color can influence user experience and product design, making it a critical consideration in electronics engineering.
Ultraviolet (UVA) - Lens Transparency
Lens Transparency in electronic components refers to the ability of a lens to allow light to pass through it without significant absorption or scattering. It is a measure of how much light is transmitted through the lens material, impacting the performance of optical devices such as sensors and cameras. High lens transparency is crucial for ensuring clear images and accurate data capture in various applications.
Clear - Lens Color
affect how much visible light reaches people's eyes, how well people see other colors and how well they see contrasts.
Colorless - Luminous Flux
the measure of the perceived power of light.
1020 mW - Wavelength
In electronic components, "wavelength" refers to the distance between two consecutive points of a wave, typically measured from peak to peak or trough to trough. It is a crucial parameter in understanding the behavior of electromagnetic waves and signals in various electronic devices. The wavelength of a signal is inversely proportional to its frequency, meaning that higher frequencies have shorter wavelengths and vice versa. Understanding the wavelength of signals is important for designing and optimizing electronic circuits, antennas, and communication systems.
385nm - Current - DC Forward (If) (Max)
The parameter "Current - DC Forward (If) (Max)" in electronic components refers to the maximum forward current that can safely pass through the component without causing damage. This parameter is typically specified in datasheets for diodes and LEDs, indicating the maximum current that can flow through the component in the forward direction. Exceeding this maximum current rating can lead to overheating and potentially permanent damage to the component. It is important to ensure that the current flowing through the component does not exceed this specified maximum to maintain proper functionality and reliability.
1A - Number of LEDs3
- Peak Wavelength
Peak Wavelength is a parameter used to describe the specific wavelength at which an electronic component, such as an LED or photodetector, emits or detects light most efficiently. It represents the maximum intensity of light emitted or detected by the component. Peak Wavelength is typically measured in nanometers (nm) and is an important characteristic for determining the color or sensitivity of the component. Understanding the Peak Wavelength of an electronic component is crucial for selecting the right component for a particular application where specific light wavelengths are required.
385 nm - Radiant Intensity (Ie) Min @ If
Radiant Intensity (Ie) Min @ If is a parameter used to describe the minimum radiant intensity emitted by an electronic component, typically an LED, at a specific forward current (If). Radiant intensity refers to the power emitted by a light source within a solid angle per unit of solid angle. This parameter helps determine the brightness or luminous intensity of the LED at a given operating current. A lower value for "Radiant Intensity (Ie) Min @ If" indicates a dimmer output from the LED, while a higher value indicates a brighter output. Manufacturers provide this specification to help users understand the performance characteristics of the component and ensure it meets their requirements for a particular application.
- - Product
In the context of electronic components, the parameter "Product" typically refers to the specific item or device being discussed or analyzed. It can refer to a physical electronic component such as a resistor, capacitor, transistor, or integrated circuit. The product parameter may also encompass more complex electronic devices like sensors, displays, microcontrollers, or communication modules.Understanding the product parameter is crucial in electronics as it helps identify the characteristics, specifications, and functionality of the component or device in question. This information is essential for selecting the right components for a circuit design, troubleshooting issues, or comparing different products for a particular application. Manufacturers often provide detailed product datasheets that outline key specifications, performance characteristics, and application guidelines to assist engineers and designers in utilizing the component effectively.
UV LEDs (Ultraviolet) - Vf - Forward Voltage
In electronic components, "Vf - Forward Voltage" refers to the voltage required for current to flow through a diode or LED in the forward direction. It is the minimum voltage needed to overcome the barrier potential at the junction of the diode, allowing current to pass through. The forward voltage drop is typically specified in datasheets and is an important parameter to consider when designing circuits using diodes or LEDs. Understanding the forward voltage helps in selecting the appropriate components and ensuring proper operation of the circuit.
3.45 V - Product Category
a particular group of related products.
High Power LEDs - Single Color - Luminous Flux/Radiant Flux
Luminous flux and radiant flux are important parameters in the field of lighting and optics. Luminous flux refers to the total amount of visible light emitted by a light source, measured in lumens. It quantifies the brightness of the light as perceived by the human eye. Radiant flux, on the other hand, refers to the total amount of electromagnetic radiation emitted by a source, including both visible and non-visible wavelengths, and is measured in watts.The relationship between luminous flux and radiant flux is determined by the spectral distribution of the light source. For example, a light source with a higher proportion of visible light will have a higher luminous flux compared to a source that emits more non-visible radiation. Understanding these parameters is crucial for designing efficient lighting systems and ensuring that the desired level of brightness is achieved while minimizing energy consumption.
1020 mW