Cherry F81JA120
Cherry F81JA120
feed

Cherry F81JA120

Manufacturer No:

F81JA120

Manufacturer:

Cherry

Utmel No:

439-F81JA120

Package:

-

ECAD Model:

Description:

Electromechanical Switch Line Interrupt Switch N.O./N.C. SPDT 10A 6Pin

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
F81JA120 information

Specifications
Documents & Media
Cherry F81JA120 technical specifications, attributes, parameters and parts with similar specifications to Cherry F81JA120.
  • Type
    Parameter
  • Contact Plating

    Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.

    Silver
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Panel
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    NO
  • Mounting Feature

    a process by which the operating system makes files and directories on a storage device (such as hard drive, CD-ROM, or network share) available for users to access via the computer's file system.

    PANEL MOUNT
  • Housing Material

    The parameter "Housing Material" in electronic components refers to the material used to encase or protect the internal circuitry of the component. The housing material plays a crucial role in providing physical protection, insulation, and environmental resistance to the electronic component. Common housing materials include plastics, metals, ceramics, and composites, each offering different levels of durability, heat resistance, and electrical properties. The choice of housing material is important in determining the overall performance, reliability, and longevity of the electronic component in various operating conditions.

    THERMOPLASTIC
  • Actuator Material

    In smart material system, actuator materials have the ability to change the shape, stiffness, position, natural frequency, damping and/or other mechanical characteristics of the smart material systems in response to changes in temperature, electric field and/or magnetic field.

    Polyester, Thermoplastic
  • Center Contact Plating

    Center Contact Plating refers to the metal coating applied to the central contact of an electronic component, such as connectors or sockets. This plating is crucial for ensuring good electrical conductivity and minimizing resistance at the point of contact. It also provides protection against corrosion and wear, which can affect the component's performance over time. The choice of plating material, such as gold or nickel, can impact the durability and reliability of the connection.

    SILVER
  • Center Contact Material

    The parameter "Center Contact Material" in electronic components refers to the material used for the central conductive part of connectors, such as RF connectors. This material is crucial for ensuring effective electrical conductivity and minimizing signal loss. Common materials include gold, silver, copper, and nickel, each offering different levels of conductivity, corrosion resistance, and mechanical properties. The choice of center contact material can significantly impact the performance and reliability of the connector in various applications.

    BRASS
  • Terminal Material

    Terminal material in electronic components refers to the type of material used for the conductive terminals of the component. It is crucial for establishing electrical connections between the component and the printed circuit board or other components. Common terminal materials include metals like gold, nickel, copper, or tin, chosen for their conductivity, corrosion resistance, and solderability. The choice of terminal material can impact the reliability and performance of the electronic device.

    BRASS
  • End Contact Material

    End Contact Material refers to the conductive material used at the termination points of electronic components, such as connectors or switches, where electrical connections are made. This material significantly impacts the component's performance, including its conductivity, corrosion resistance, and overall longevity. Common materials used for end contacts include gold, silver, nickel, and copper, chosen based on the specific application requirements and environmental conditions. The choice of end contact material is crucial for ensuring reliable and efficient electrical connections in electronic assemblies.

    BRASS
  • End Contact Plating

    End contact plating refers to the process of applying a thin layer of metal coating to the contact points at the ends of electronic components. This plating serves several purposes, including enhancing the electrical conductivity of the contacts, preventing corrosion, and improving solderability. The choice of plating material can vary depending on the specific requirements of the component, with common options including gold, silver, tin, and nickel. Proper end contact plating is essential for ensuring reliable electrical connections and overall performance of electronic components.

    SILVER
  • Contact Materials
    Silver
  • ElectricalLife
    50 kcycles
  • Voltage Rating (AC)
    400 V
  • Insulator Material
    POLYESTER
  • Operating Temperature-Min
    -25 °C
  • Operating Temperature-Max
    85 °C
  • Rohs Code
    Yes
  • Manufacturer Part Number
    F81J-A120
  • Manufacturer
    The Cherry Corporation
  • Part Life Cycle Code
    Contact Manufacturer
  • Ihs Manufacturer
    THE CHERRY CORP
  • Risk Rank
    5.77
  • Manufacturer Series
    F80
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    Yes
  • Termination

    Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.

    Quick Connect
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    85 °C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    -25 °C
  • HTS Code

    HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.

    8536.50.70.00
  • Orientation

    In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.

    Straight
  • Depth

    In electronic components, "Depth" typically refers to the measurement of the distance from the front to the back of the component. It is an important parameter to consider when designing or selecting components for a project, as it determines how much space the component will occupy within a circuit or device. The depth of a component can impact the overall size and layout of the circuit board or enclosure in which it will be installed. It is usually specified in millimeters or inches and is crucial for ensuring proper fit and functionality within the intended application.

    17.4 mm
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    compliant
  • Current Rating

    Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.

    10 A
  • Body Length or Diameter

    Body length or diameter in electronic components refers to the physical dimensions of a component's housing, typically measured in millimeters or inches. It indicates the size of the component that affects its fit within a circuit board or system. This parameter is crucial for ensuring compatibility with the design and mounting of electronic devices. It can impact heat dissipation, electrical performance, and overall assembly efficiency. Accurate measurement of body length or diameter is essential for proper component selection and placement in electronic applications.

    39.88 mm
  • Body Breadth

    Body breadth in electronic components refers to the width of the physical body of a component, such as a resistor, capacitor, or integrated circuit. This measurement is crucial for ensuring proper fit within a circuit board or enclosure. It can affect the component's thermal performance, mechanical stability, and overall compatibility with other components in a design. Body breadth is typically specified in millimeters or inches and is an important factor in the selection and design of electronic assemblies.

    13.26 mm
  • Actuator Type

    The actuator type in electronic components refers to the specific mechanism or technology used to convert electrical energy into physical motion or action. Common actuator types include electric motors, solenoids, piezoelectric actuators, and hydraulic or pneumatic cylinders. Each type has its unique characteristics, advantages, and applications, allowing them to be utilized in diverse systems such as robotics, automation, and control processes. The choice of actuator type often influences the performance, efficiency, and functionality of the overall system.

    PUSHBUTTON
  • Switch Function

    This function will evaluate a given expression (or a value) against a list of values and will return a result corresponding to the first matching value. In case there is no matching value, an optional default value will be returned.

    SPST
  • Contact Current(DC)-Max

    Contact Current (DC) - Max is a parameter in electronic components that specifies the maximum amount of direct current (DC) that can safely flow through the contact or connection point without causing damage or failure. This parameter is crucial for ensuring the reliability and longevity of the component, as exceeding the maximum contact current rating can lead to overheating, arcing, or even permanent damage. Designers and engineers must carefully consider this specification when selecting components for a circuit to prevent potential issues and ensure proper functionality. It is important to adhere to the manufacturer's guidelines and specifications to avoid any potential risks associated with exceeding the maximum contact current rating.

    6 A
  • Contact Voltage(DC)-Max

    Contact Voltage(DC)-Max refers to the maximum allowable direct current voltage that can be applied across the contacts of an electronic component without causing permanent damage or failure. It indicates the threshold above which electrical breakdown may occur, potentially harming the component's functionality. This parameter is crucial for ensuring the reliability and safety of components in various applications, as exceeding this value can lead to insulation breakdown or overheating.

    30 V
  • Max Voltage Rating (AC)

    The parameter "Max Voltage Rating (AC)" in electronic components refers to the maximum alternating current (AC) voltage that the component can safely handle without being damaged. This rating is important for ensuring the component's longevity and reliability in a circuit. Exceeding the maximum voltage rating can lead to overheating, breakdown, or even permanent damage to the component. It is crucial to select components with voltage ratings that are suitable for the intended application to prevent malfunctions or safety hazards in the circuit.

    400 V
  • Termination Type

    Termination Type in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It specifies how the component's leads or terminals are designed for soldering or mounting onto a PCB. Common termination types include through-hole, surface mount, and wire lead terminations. The termination type is an important consideration when selecting components for a circuit design, as it determines how the component will be physically connected within the circuit. Different termination types offer varying levels of durability, ease of assembly, and suitability for specific applications.

    QUICK CONNECT
  • Max Current Rating

    The "Max Current Rating" parameter in electronic components refers to the maximum amount of electrical current that the component can safely handle without being damaged. It is an important specification to consider when designing or selecting components for a circuit, as exceeding the maximum current rating can lead to overheating, malfunction, or even permanent damage to the component. The max current rating is typically provided in amperes (A) and is determined by the component's internal construction, materials used, and thermal characteristics. It is crucial to ensure that the current flowing through the component does not exceed this specified limit to maintain the component's reliability and longevity.

    10 A
  • Throw Configuration

    "Throw Configuration" is a term commonly used in the context of switches and relays in electronic components. It refers to the number of positions or states that the switch or relay can be set to. For example, a single-throw (ST) configuration means the switch has only one position, while a double-throw (DT) configuration means the switch has two positions.The throw configuration is important because it determines the versatility and functionality of the switch or relay. Different applications may require different throw configurations to control the flow of current or signals effectively. Understanding the throw configuration of a component is crucial for proper installation and operation within an electronic circuit.

    SPDT, SPST
  • Max Voltage Rating (DC)

    The parameter "Max Voltage Rating (DC)" in electronic components refers to the maximum direct current (DC) voltage that the component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component within an electrical circuit. Exceeding the maximum voltage rating can lead to breakdown or failure of the component, potentially causing damage to the entire circuit. It is important to carefully consider and adhere to the specified max voltage rating when designing or working with electronic circuits to prevent any potential risks or malfunctions.

    30 V
  • Switch Type

    Based on their characteristics, there are basically three types of switches: Linear switches, tactile switches and clicky switches.

    SNAP ACTING/LIMIT SWITCH
  • Contact Current Rating

    The current rating of a contact is defined as the current level that creates a certain temperature rise of the contact spring — usually 20°C or 30°C. Both electrical and thermal factors govern the heat created by the current.

    10 A
  • Contact Current(AC)-Max

    Contact Current (AC) - Max is a parameter used to specify the maximum alternating current that can safely flow through the contacts of an electronic component, such as a relay or a switch. This parameter is crucial for ensuring the proper functioning and longevity of the component, as exceeding the maximum contact current can lead to overheating, arcing, and potential damage to the contacts. Manufacturers provide this specification to help users determine the compatibility of the component with their specific application requirements. It is important to adhere to the specified maximum contact current to prevent malfunctions and ensure the reliability of the electronic system.

    10 A
  • Contact (AC) Max Rating R Load

    The parameter "Contact (AC) Max Rating R Load" in electronic components refers to the maximum alternating current (AC) rating that the contact can handle when connected to a resistive load. This specification is important for determining the maximum current that can safely flow through the contact without causing damage or failure. It is typically expressed in amperes (A) and helps ensure that the component can reliably handle the electrical load it is designed for. Manufacturers provide this rating to help users select the appropriate component for their specific application to prevent overheating, arcing, or other potential issues related to excessive current flow.

  • Contact Timing

    Contact Timing in electronic components refers to the specific moment when electrical contacts make or break during operation, impacting the overall performance and efficiency of a device. It is crucial for ensuring the proper synchronization of signals in circuits, particularly in relays and switches. Accurate contact timing minimizes signal distortion and reduces wear on components, thereby enhancing the reliability and longevity of electronic systems.

    SNAP ACTION
  • Contact (DC) Max Rating R Load

    Contact (DC) Max Rating R Load refers to the maximum direct current (DC) load that an electronic component, typically a relay or switch, can handle without risk of damage or failure. This rating indicates the highest permissible current that can pass through the contacts while maintaining reliable operation. It is crucial for ensuring the safety and longevity of the component in circuit applications that involve direct current. Exceeding this rating can lead to overheating, arc formation, or contact welding.

  • Contact Voltage(AC)-Max

    Contact Voltage(AC)-Max refers to the maximum alternating current voltage that an electronic component can safely handle at its contact points. This parameter is critical for ensuring the safe and effective operation of devices in AC circuits. Exceeding this voltage can lead to failure or damage of the component, making it essential for designers to adhere to specified voltage ratings.

    250 V
  • Operating Position

    The parameter "Operating Position" in electronic components refers to the specific orientation or position in which the component is designed to function optimally. This parameter is important because certain electronic components, such as sensors or displays, may have different performance characteristics depending on their orientation. For example, a sensor may be designed to detect motion accurately only when placed in a specific position, or a display may have a recommended viewing angle for optimal visibility.Manufacturers typically provide guidelines or specifications regarding the operating position of electronic components to ensure proper functionality and performance. It is important for users to follow these guidelines to avoid any issues with the component's operation or potential damage. Understanding and adhering to the recommended operating position can help ensure the reliable and efficient operation of electronic components in various applications.

    0.354 inch
  • Contact Function

    Contact function in electronic components refers to the specific role or purpose of the contact within the component. Contacts are the points where electrical connections are made between different parts of the component or between the component and an external circuit. The contact function can vary depending on the type of component and its intended use. For example, in a switch, the contact function is to open or close the circuit, while in a connector, the contact function is to establish a secure and reliable electrical connection between two components. Understanding the contact function is crucial for designing and using electronic components effectively in various applications.

    ON-(ON)
  • Actuator Travel

    Actuator travel refers to the distance or range that an actuator, which is a component responsible for moving or controlling a mechanism, can travel or move. In electronic components, such as motors, solenoids, or valves, actuator travel is an important parameter that determines the extent to which the actuator can physically displace or manipulate objects. It is typically specified in terms of linear distance or angular rotation, depending on the type of actuator. Understanding the actuator travel is crucial for designing and implementing systems where precise movement or positioning is required.

    8 mm
  • Switch Action

    The parameter "Switch Action" refers to the manner in which a switch operates or transitions between its open and closed states. It defines how the switch is activated, whether it is momentary, maintained, or toggle action. Additionally, it indicates the mechanical movement and the way the electrical connection is made or broken within the switch, influencing its suitability for various applications in electronic circuits.

    MOMENTARY
  • Pre-Travel-Max

    Pre-Travel-Max is a parameter in electronic components, particularly in devices such as switches and sensors. It refers to the maximum distance or amount of travel that a component can undergo before a specific action or response is triggered. This parameter is important in determining the sensitivity and responsiveness of the component, as it helps define the threshold at which the component will activate or deactivate. Manufacturers provide this specification to ensure that the component functions correctly within its intended range of operation, helping users understand the limits of the device's pre-travel distance.

    5.99 mm
  • Contact (AC) Max Power Rating R Load

    The parameter "Contact (AC) Max Power Rating R Load" in electronic components refers to the maximum power that can be safely handled by the contacts when carrying an alternating current (AC) load. This rating is important for ensuring that the contacts do not overheat or fail when carrying the specified power level. It is typically expressed in watts and helps determine the suitability of the component for a particular application where AC power is involved. Manufacturers provide this specification to guide users in selecting components that can reliably handle the required power levels without experiencing damage or performance degradation.

  • Operating Force-Max

    Operating Force-Max is a parameter used to describe the maximum force that can be applied to an electronic component, such as a switch or button, without causing damage or malfunction. This force is typically measured in units of pressure, such as Newtons or grams. Exceeding the specified Operating Force-Max can lead to issues like component failure, reduced lifespan, or impaired functionality. Manufacturers provide this information to ensure that users operate the component within safe limits and avoid potential damage. It is important to adhere to the specified Operating Force-Max to maintain the reliability and performance of the electronic component.

    8.49 N
  • Terminal Length

    In electronic components, "Terminal Length" refers to the physical length of the terminal or lead of a component, such as a resistor, capacitor, or integrated circuit. It is the distance from the body of the component to the end of the terminal where connections are made. The terminal length is an important parameter as it determines how much space is required for soldering or connecting the component to a circuit board or other components. It also affects the overall size and layout of the circuit board. Manufacturers provide terminal length specifications to ensure proper installation and compatibility with the intended application.

    0.382 inch
  • Height
    30.8 mm
  • Length
    39.88 mm
  • Width
    36.8 mm
  • Body Height

    In electronic components, "Body Height" refers to the vertical dimension of the component's physical body or package. It is the measurement from the bottom of the component to the top, excluding any leads or terminals. Body Height is an important parameter to consider when designing circuit boards or enclosures to ensure proper fit and clearance. It is typically specified in datasheets or technical drawings provided by the component manufacturer. Understanding the Body Height of electronic components is crucial for proper placement and integration within a circuit or system.

    32.92 mm
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    RoHS Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Cherry F81JA120.
F81JA120 Relevant information

Hot Sale
Related Categories
Similar Products
Related Products
Same Manufacturer Products
The following parts include "F81JA120" in Cherry F81JA120.
  • Part Number
  • Manufacturer
  • Package
  • Description