C&K Components 7108L41YAV2GE2
C&K Components 7108L41YAV2GE2
feed

C&K Components 7108L41YAV2GE2

Manufacturer No:

7108L41YAV2GE2

Manufacturer:

C&K Components

Utmel No:

374-7108L41YAV2GE2

Package:

-

ECAD Model:

Description:

7108L41YAV2GE2 datasheet pdf and Toggle Switches product details from C&K Components stock available at Utmel

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
7108L41YAV2GE2 information

Specifications
C&K Components 7108L41YAV2GE2 technical specifications, attributes, parameters and parts with similar specifications to C&K Components 7108L41YAV2GE2.
  • Type
    Parameter
  • Contact Plating

    Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.

    Gold
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Brackets
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    NO
  • Mounting Feature

    a process by which the operating system makes files and directories on a storage device (such as hard drive, CD-ROM, or network share) available for users to access via the computer's file system.

    THROUGH HOLE-RIGHT ANGLE
  • Housing Material

    The parameter "Housing Material" in electronic components refers to the material used to encase or protect the internal circuitry of the component. The housing material plays a crucial role in providing physical protection, insulation, and environmental resistance to the electronic component. Common housing materials include plastics, metals, ceramics, and composites, each offering different levels of durability, heat resistance, and electrical properties. The choice of housing material is important in determining the overall performance, reliability, and longevity of the electronic component in various operating conditions.

    STAINLESS STEEL
  • Actuator Material

    In smart material system, actuator materials have the ability to change the shape, stiffness, position, natural frequency, damping and/or other mechanical characteristics of the smart material systems in response to changes in temperature, electric field and/or magnetic field.

    BRASS
  • Center Contact Plating

    Center Contact Plating refers to the metal coating applied to the central contact of an electronic component, such as connectors or sockets. This plating is crucial for ensuring good electrical conductivity and minimizing resistance at the point of contact. It also provides protection against corrosion and wear, which can affect the component's performance over time. The choice of plating material, such as gold or nickel, can impact the durability and reliability of the connection.

    GOLD OVER NICKEL
  • Center Contact Material

    The parameter "Center Contact Material" in electronic components refers to the material used for the central conductive part of connectors, such as RF connectors. This material is crucial for ensuring effective electrical conductivity and minimizing signal loss. Common materials include gold, silver, copper, and nickel, each offering different levels of conductivity, corrosion resistance, and mechanical properties. The choice of center contact material can significantly impact the performance and reliability of the connector in various applications.

    COPPER ALLOY
  • Terminal Material

    Terminal material in electronic components refers to the type of material used for the conductive terminals of the component. It is crucial for establishing electrical connections between the component and the printed circuit board or other components. Common terminal materials include metals like gold, nickel, copper, or tin, chosen for their conductivity, corrosion resistance, and solderability. The choice of terminal material can impact the reliability and performance of the electronic device.

    COPPER ALLOY
  • End Contact Material

    End Contact Material refers to the conductive material used at the termination points of electronic components, such as connectors or switches, where electrical connections are made. This material significantly impacts the component's performance, including its conductivity, corrosion resistance, and overall longevity. Common materials used for end contacts include gold, silver, nickel, and copper, chosen based on the specific application requirements and environmental conditions. The choice of end contact material is crucial for ensuring reliable and efficient electrical connections in electronic assemblies.

    COIN SILVER
  • End Contact Plating

    End contact plating refers to the process of applying a thin layer of metal coating to the contact points at the ends of electronic components. This plating serves several purposes, including enhancing the electrical conductivity of the contacts, preventing corrosion, and improving solderability. The choice of plating material can vary depending on the specific requirements of the component, with common options including gold, silver, tin, and nickel. Proper end contact plating is essential for ensuring reliable electrical connections and overall performance of electronic components.

    GOLD OVER NICKEL
  • Contact Materials
    Silver
  • RoHS
    Compliant
  • Operating Temperature-Min
    -30 °C
  • Operating Temperature-Max
    85 °C
  • Rohs Code
    Yes
  • Manufacturer Part Number
    7108L41YAV2GE2
  • ActuatorColor
    BLACK
  • Manufacturer
    C&K
  • Part Life Cycle Code
    Active
  • Ihs Manufacturer
    C & K COMPONENTS INC
  • ElectricalLife
    100000 Cycle(s)
  • Risk Rank
    5.31
  • Dielectric Withstand Volts
    1400VAC V
  • Manufacturer Series
    7000
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Bulk
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e4
  • Termination

    Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.

    PC Pins
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Gold (Au) - with Nickel (Ni) barrier
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    85 °C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    -30 °C
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    not_compliant
  • Body Length or Diameter

    Body length or diameter in electronic components refers to the physical dimensions of a component's housing, typically measured in millimeters or inches. It indicates the size of the component that affects its fit within a circuit board or system. This parameter is crucial for ensuring compatibility with the design and mounting of electronic devices. It can impact heat dissipation, electrical performance, and overall assembly efficiency. Accurate measurement of body length or diameter is essential for proper component selection and placement in electronic applications.

    12.7 mm
  • Body Breadth

    Body breadth in electronic components refers to the width of the physical body of a component, such as a resistor, capacitor, or integrated circuit. This measurement is crucial for ensuring proper fit within a circuit board or enclosure. It can affect the component's thermal performance, mechanical stability, and overall compatibility with other components in a design. Body breadth is typically specified in millimeters or inches and is an important factor in the selection and design of electronic assemblies.

    6.858 mm
  • Actuator Type

    The actuator type in electronic components refers to the specific mechanism or technology used to convert electrical energy into physical motion or action. Common actuator types include electric motors, solenoids, piezoelectric actuators, and hydraulic or pneumatic cylinders. Each type has its unique characteristics, advantages, and applications, allowing them to be utilized in diverse systems such as robotics, automation, and control processes. The choice of actuator type often influences the performance, efficiency, and functionality of the overall system.

    TOGGLE
  • Switch Function

    This function will evaluate a given expression (or a value) against a list of values and will return a result corresponding to the first matching value. In case there is no matching value, an optional default value will be returned.

    SPDT
  • Contact Resistance

    Contact resistance refers to the resistance encountered at the point of contact between two conductive materials or components. It is a measure of how well the two materials make electrical contact with each other. High contact resistance can lead to voltage drops, power losses, and inefficient electrical connections. It is typically measured in ohms and is an important parameter to consider in electronic components such as connectors, switches, and relays. Lower contact resistance is desirable for ensuring reliable and efficient electrical connections in electronic circuits.

    0.01 mΩ
  • Insulation Resistance

    The measurement of insulation resistance is carried out by means of a megohmmeter – high resistance range ohmmeter. A general rule-of-thumb is 10 Megohm or more.

    1000000000 Ω
  • Contact Current(DC)-Max

    Contact Current (DC) - Max is a parameter in electronic components that specifies the maximum amount of direct current (DC) that can safely flow through the contact or connection point without causing damage or failure. This parameter is crucial for ensuring the reliability and longevity of the component, as exceeding the maximum contact current rating can lead to overheating, arcing, or even permanent damage. Designers and engineers must carefully consider this specification when selecting components for a circuit to prevent potential issues and ensure proper functionality. It is important to adhere to the manufacturer's guidelines and specifications to avoid any potential risks associated with exceeding the maximum contact current rating.

    5 A
  • Sealing

    Sealing in electronic components refers to the process of enclosing and protecting sensitive parts from environmental factors such as moisture, dust, and chemicals. This is essential for ensuring the reliability and longevity of the components. Sealing is achieved through various methods, including the use of potting compounds, encapsulation materials, or hermetic sealing techniques. Proper sealing enhances the performance and durability of electronic devices in demanding applications.

    EPOXY
  • Contact Voltage(DC)-Max

    Contact Voltage(DC)-Max refers to the maximum allowable direct current voltage that can be applied across the contacts of an electronic component without causing permanent damage or failure. It indicates the threshold above which electrical breakdown may occur, potentially harming the component's functionality. This parameter is crucial for ensuring the reliability and safety of components in various applications, as exceeding this value can lead to insulation breakdown or overheating.

    28 V
  • Max Voltage Rating (AC)

    The parameter "Max Voltage Rating (AC)" in electronic components refers to the maximum alternating current (AC) voltage that the component can safely handle without being damaged. This rating is important for ensuring the component's longevity and reliability in a circuit. Exceeding the maximum voltage rating can lead to overheating, breakdown, or even permanent damage to the component. It is crucial to select components with voltage ratings that are suitable for the intended application to prevent malfunctions or safety hazards in the circuit.

    250 V
  • Termination Type

    Termination Type in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It specifies how the component's leads or terminals are designed for soldering or mounting onto a PCB. Common termination types include through-hole, surface mount, and wire lead terminations. The termination type is an important consideration when selecting components for a circuit design, as it determines how the component will be physically connected within the circuit. Different termination types offer varying levels of durability, ease of assembly, and suitability for specific applications.

    SOLDER
  • Throw Configuration

    "Throw Configuration" is a term commonly used in the context of switches and relays in electronic components. It refers to the number of positions or states that the switch or relay can be set to. For example, a single-throw (ST) configuration means the switch has only one position, while a double-throw (DT) configuration means the switch has two positions.The throw configuration is important because it determines the versatility and functionality of the switch or relay. Different applications may require different throw configurations to control the flow of current or signals effectively. Understanding the throw configuration of a component is crucial for proper installation and operation within an electronic circuit.

    SPDT
  • Max Voltage Rating (DC)

    The parameter "Max Voltage Rating (DC)" in electronic components refers to the maximum direct current (DC) voltage that the component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component within an electrical circuit. Exceeding the maximum voltage rating can lead to breakdown or failure of the component, potentially causing damage to the entire circuit. It is important to carefully consider and adhere to the specified max voltage rating when designing or working with electronic circuits to prevent any potential risks or malfunctions.

    28 V
  • Switch Type

    Based on their characteristics, there are basically three types of switches: Linear switches, tactile switches and clicky switches.

    TOGGLE SWITCH
  • Contact Current(AC)-Max

    Contact Current (AC) - Max is a parameter used to specify the maximum alternating current that can safely flow through the contacts of an electronic component, such as a relay or a switch. This parameter is crucial for ensuring the proper functioning and longevity of the component, as exceeding the maximum contact current can lead to overheating, arcing, and potential damage to the contacts. Manufacturers provide this specification to help users determine the compatibility of the component with their specific application requirements. It is important to adhere to the specified maximum contact current to prevent malfunctions and ensure the reliability of the electronic system.

    2 A
  • Contact (AC) Max Rating R Load

    The parameter "Contact (AC) Max Rating R Load" in electronic components refers to the maximum alternating current (AC) rating that the contact can handle when connected to a resistive load. This specification is important for determining the maximum current that can safely flow through the contact without causing damage or failure. It is typically expressed in amperes (A) and helps ensure that the component can reliably handle the electrical load it is designed for. Manufacturers provide this rating to help users select the appropriate component for their specific application to prevent overheating, arcing, or other potential issues related to excessive current flow.

  • Contact (DC) Max Rating R Load

    Contact (DC) Max Rating R Load refers to the maximum direct current (DC) load that an electronic component, typically a relay or switch, can handle without risk of damage or failure. This rating indicates the highest permissible current that can pass through the contacts while maintaining reliable operation. It is crucial for ensuring the safety and longevity of the component in circuit applications that involve direct current. Exceeding this rating can lead to overheating, arc formation, or contact welding.

  • Contact Voltage(AC)-Max

    Contact Voltage(AC)-Max refers to the maximum alternating current voltage that an electronic component can safely handle at its contact points. This parameter is critical for ensuring the safe and effective operation of devices in AC circuits. Exceeding this voltage can lead to failure or damage of the component, making it essential for designers to adhere to specified voltage ratings.

    250 V
  • PCB Hole Count

    The "PCB Hole Count" parameter in electronic components refers to the number of holes present in the printed circuit board (PCB) that are used for mounting and connecting the component. These holes are typically used for inserting leads or pins of the component and soldering them to the PCB for electrical connection. The PCB hole count is an important specification as it determines how the component will be physically mounted and connected to the circuit board during the assembly process. Manufacturers provide this information to help designers and engineers ensure proper placement and alignment of components on the PCB for optimal performance and reliability of the electronic system.

    5
  • Contact Function

    Contact function in electronic components refers to the specific role or purpose of the contact within the component. Contacts are the points where electrical connections are made between different parts of the component or between the component and an external circuit. The contact function can vary depending on the type of component and its intended use. For example, in a switch, the contact function is to open or close the circuit, while in a connector, the contact function is to establish a secure and reliable electrical connection between two components. Understanding the contact function is crucial for designing and using electronic components effectively in various applications.

    ON-(ON)
  • Switch Action

    The parameter "Switch Action" refers to the manner in which a switch operates or transitions between its open and closed states. It defines how the switch is activated, whether it is momentary, maintained, or toggle action. Additionally, it indicates the mechanical movement and the way the electrical connection is made or broken within the switch, influencing its suitability for various applications in electronic circuits.

    MOMENTARY
  • Bushing Length

    Bushing Length refers to the measurement of the sleeve or cylindrical part of a component, such as a connector or switch, that extends through a mounting panel or enclosure. It is important for ensuring proper fit and alignment of the component within its housing. A correct bushing length allows for adequate support and stability while preventing mechanical stress on the connections or the component itself. This parameter is critical in design considerations for maintaining the integrity of electronic assemblies.

    0.35 inch
  • Contact (DC) Max Power Rating R Load

    The parameter "Contact (DC) Max Power Rating R Load" in electronic components refers to the maximum amount of power that can be safely handled by the contacts of the component when a direct current (DC) load is applied. This rating is important to ensure that the contacts do not overheat or fail when carrying current. It is typically specified in watts and helps determine the suitability of the component for a particular application where power dissipation is a concern. It is crucial to adhere to this rating to prevent damage to the component and ensure reliable operation in the circuit.

  • Actuator Angle

    Actuator angle refers to the angular displacement or rotation of an actuator, which is a component responsible for controlling or moving a mechanism in electronic devices. The actuator angle parameter specifies the range of motion or rotation that the actuator can achieve, typically measured in degrees or radians. This parameter is crucial in determining the precision and accuracy of the actuator's movement, as well as its ability to perform specific tasks within an electronic system. Understanding the actuator angle helps engineers and designers select the appropriate actuator for a particular application based on the required range of motion and performance criteria.

    25 deg
  • Bushing Type

    In electronic components, the term "Bushing Type" refers to the design and structure of the bushing used in the component. A bushing is a type of insulating component that is used to provide mechanical support and electrical insulation in various electronic devices. The bushing type can vary based on factors such as material, shape, size, and mounting method.The bushing type is important in determining the overall performance and functionality of the electronic component. Different bushing types may be used depending on the specific requirements of the application, such as voltage rating, current capacity, environmental conditions, and space constraints. Common bushing types include threaded bushings, flanged bushings, and press-fit bushings.Overall, the bushing type plays a crucial role in ensuring the reliability, safety, and efficiency of electronic components by providing proper insulation and support for electrical connections. It is essential to consider the bushing type carefully when designing or selecting electronic components to meet the desired specifications and performance criteria.

    1/4-40
  • Terminal Length

    In electronic components, "Terminal Length" refers to the physical length of the terminal or lead of a component, such as a resistor, capacitor, or integrated circuit. It is the distance from the body of the component to the end of the terminal where connections are made. The terminal length is an important parameter as it determines how much space is required for soldering or connecting the component to a circuit board or other components. It also affects the overall size and layout of the circuit board. Manufacturers provide terminal length specifications to ensure proper installation and compatibility with the intended application.

    0.125 inch
  • Body Height

    In electronic components, "Body Height" refers to the vertical dimension of the component's physical body or package. It is the measurement from the bottom of the component to the top, excluding any leads or terminals. Body Height is an important parameter to consider when designing circuit boards or enclosures to ensure proper fit and clearance. It is typically specified in datasheets or technical drawings provided by the component manufacturer. Understanding the Body Height of electronic components is crucial for proper placement and integration within a circuit or system.

    20.32 mm
  • Actuator Length

    Actuator Length in electronic components refers to the physical length of the actuator, which is the part of the component responsible for initiating or controlling a mechanical action. The actuator length is an important parameter as it determines the range of motion or force that can be exerted by the component. In devices such as switches, valves, and motors, the actuator length directly impacts the efficiency and effectiveness of the component's operation. Designers and engineers consider the actuator length carefully to ensure that the component meets the required specifications and functions properly within the intended system.

    13.4874 mm
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
0 Similar Products Remaining