

Cornell Dubilier Electronics (CDE) BLH305K701A022
Manufacturer No:
BLH305K701A022
Tiny WHSLManufacturer:
Utmel No:
553-BLH305K701A022
Package:
Radial
Description:
BLH 3 μF Film Capacitor ±10% Radial PC Pins Polypropylene (PP), Metallized
Quantity:
Unit Price: $1.946030
Ext Price: $1.95
Delivery:





Payment:











In Stock : 10
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$1.946030
$1.95
10
$1.835878
$18.36
100
$1.731960
$173.20
500
$1.633925
$816.96
1000
$1.541438
$1,541.44
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Through Hole - Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
Radial - Number of Pins2 Pin
- Dielectric Material
a substance that is a poor conductor of electricity, but an efficient supporter of electrostatic field s.
Polypropylene (PP), Metallized - MfrCornell Dubilier Electronics (CDE)
- PackageBulk
- Product StatusActive
- Voltage Rating AC
In general the AC voltage assumes a 50-60 Hz sinusoidal waveform and is the RMS (root mean squared) value.
- - Voltage Rating DC
The DC Voltage ratings are the AC voltage values times 1.41 (usually rounded).
700V - Maximum Operating Temperature
the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.
+ 105 C - Minimum Operating Temperature- 40 C
- Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
BLH - Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-40°C ~ 105°C - Size / Dimension
In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.
1.260" L x 0.433" W (32.00mm x 11.00mm) - Tolerance
In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.
±10% - Termination
Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.
PC Pins - Applications
The parameter "Applications" in electronic components refers to the specific uses or functions for which a component is designed. It encompasses various fields such as consumer electronics, industrial automation, telecommunications, automotive, and medical devices. Understanding the applications helps in selecting the right components for a particular design based on performance, reliability, and compatibility requirements. This parameter also guides manufacturers in targeting their products to relevant markets and customer needs.
Automotive; DC Link, DC Filtering - Capacitance
Capacitance is a fundamental electrical property of electronic components that describes their ability to store electrical energy in the form of an electric field. It is measured in farads (F) and represents the ratio of the amount of electric charge stored on a component to the voltage across it. Capacitors are passive components that exhibit capacitance and are commonly used in electronic circuits for various purposes such as filtering, energy storage, timing, and coupling. Capacitance plays a crucial role in determining the behavior and performance of electronic systems by influencing factors like signal propagation, frequency response, and power consumption.
3 μF - SubcategoryCapacitors
- Termination Style
"Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.
Axial - ESR (Equivalent Series Resistance)
Equivalent Series Resistance (ESR) is a parameter that describes the internal resistance of a capacitor or an inductor in an electronic circuit. It represents the total resistance that is present in series with the ideal capacitance or inductance of the component. ESR is typically caused by factors such as the resistance of the conductive materials used in the component, the connections within the component, and the dielectric material used. A lower ESR value is desirable in electronic components as it indicates better performance and efficiency, especially in applications where high-frequency signals or rapid changes in voltage are involved. ESR is an important parameter to consider when selecting components for applications such as power supplies, filtering circuits, and signal processing.
28 mOhms - Lead Spacing
the distance between two baselines of lines of type. The word 'leading' originates from the strips of lead hand-typesetters used to use to space out lines of text evenly. The word leading has stuck, but essentially it's a typographer's term for line spacing.
1.083" (27.50mm) - Lead Diameter
The parameter "Lead Diameter" in electronic components refers to the diameter of the metal wires or leads that are attached to the component for electrical connection. These leads are typically made of materials like copper or aluminum and are used to connect the component to a circuit board or other electronic devices. The lead diameter is an important specification as it determines the size of the holes needed in the circuit board for proper insertion and soldering of the component. It also affects the overall mechanical strength and durability of the component, as thicker leads are generally more robust and less prone to damage during handling or assembly.
0.8 mm - Lead Style
Lead Style in electronic components refers to the configuration and arrangement of leads or terminals that connect the component to a circuit. This parameter affects the component's mounting method, compatibility with PCB layouts, and overall physical dimensions. Common lead styles include through-hole, surface-mount, and post styles, each suited for different applications and manufacturing processes. Lead style is crucial for ensuring proper electrical connections and mechanical stability within electronic assemblies.
Straight - Product Type
a group of products which fulfill a similar need for a market segment or market as a whole.
Film Capacitors - ESR
ESR stands for Equivalent Series Resistance and is a crucial parameter in electronic components, particularly in capacitors. It represents the internal resistance of a capacitor at high frequencies and is measured in ohms. ESR is important because it affects the performance and efficiency of the capacitor in filtering and energy storage applications. A low ESR value indicates a more efficient capacitor with better performance, while a high ESR value can lead to increased power losses and reduced effectiveness of the capacitor. It is essential to consider the ESR value when selecting capacitors for specific electronic circuits to ensure optimal performance.
28 mOhms - Product
In the context of electronic components, the parameter "Product" typically refers to the specific item or device being discussed or analyzed. It can refer to a physical electronic component such as a resistor, capacitor, transistor, or integrated circuit. The product parameter may also encompass more complex electronic devices like sensors, displays, microcontrollers, or communication modules.Understanding the product parameter is crucial in electronics as it helps identify the characteristics, specifications, and functionality of the component or device in question. This information is essential for selecting the right components for a circuit design, troubleshooting issues, or comparing different products for a particular application. Manufacturers often provide detailed product datasheets that outline key specifications, performance characteristics, and application guidelines to assist engineers and designers in utilizing the component effectively.
DC Link Film Capacitors - Features
In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.
85C/85% Humidity, THB, Low ESR, Low ESL, Long Life - Height Seated (Max)
Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.
0.819" (20.80mm) - Width20 mm
- Height11 mm
- Length32 mm
- Ratings
The parameter "Ratings" in electronic components refers to the specified limits that define the maximum operational capabilities of a component. These ratings include voltage, current, power, temperature, and frequency, determining the conditions under which the component can function safely and effectively. Exceeding these ratings can lead to failure, damage, or unsafe operation, making it crucial for designers to adhere to them during component selection and usage.
AEC-Q200
SCD335K601A3Z25-F
Cornell Dubilier Electronics (CDE)FCP1913H683J-E1
Cornell Dubilier Electronics (CDE)SFA66T8K475B-F
Cornell Dubilier Electronics (CDE)105PPA122K
Cornell Dubilier ElectronicsSFP37T12.5K238B-F
Cornell Dubilier Electronics (CDE)155MSR250K
Cornell Dubilier Electronics664HC1600K2CM6
Cornell Dubilier ElectronicsSFD66T35K475B-F
Cornell Dubilier Electronics (CDE)104M06QC330
Cornell Dubilier ElectronicsDME2S47K-F
Cornell Dubilier Electronics (CDE)