

Everlight Electronics Co Ltd ELSH-F81M1-0CPGS-C3000
Manufacturer No:
ELSH-F81M1-0CPGS-C3000
Tiny WHSLManufacturer:
Utmel No:
821-ELSH-F81M1-0CPGS-C3000
Package:
1812 (4532 Metric)
Datasheet:
Description:
LED SHUEN WARM WHITE 3000K 2SMD
Quantity:
Unit Price: $5.424275
Ext Price: $5.42
Delivery:





Payment:











In Stock : 24112
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$5.424275
$5.42
10
$5.117241
$51.17
100
$4.827585
$482.76
500
$4.554326
$2,277.16
1000
$4.296534
$4,296.53
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Factory Lead Time12 Weeks
- Mount
In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.
Surface Mount - Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Surface Mount - Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
1812 (4532 Metric) - Shape
In electronic components, the parameter "Shape" refers to the physical form or outline of the component. It describes the external appearance of the component, including its dimensions, size, and overall structure. The shape of an electronic component can vary widely depending on its function and design requirements. Common shapes include rectangular, cylindrical, square, and circular, among others. The shape of a component is an important consideration in the design and layout of electronic circuits, as it can impact factors such as space utilization, heat dissipation, and ease of assembly.
ROUND - Thermal Resistance of Package
Thermal resistance of a package in electronic components refers to the ability of a package to dissipate heat generated by the component. It is quantified as the temperature rise of the package per unit of power dissipated, typically expressed in degrees Celsius per watt. A lower thermal resistance value indicates better heat dissipation capabilities, ensuring the component operates within safe temperature limits. This parameter is critical for maintaining performance, reliability, and longevity of electronic devices by preventing overheating.
10°C/W - CCT(K)3000K (2870K ~ 3220K)
- Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Tape & Reel (TR) - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
SHUEN - Published2011
- Size / Dimension
In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.
0.177Lx0.120W 4.50mmx3.05mm - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
1 (Unlimited) - Number of Terminations2
- Max Operating Temperature
The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.
100°C - Min Operating Temperature
The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.
-40°C - ColorWhite, Warm
- HTS Code
HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.
8541.40.20.00 - Packing Method
The packing method in electronic components refers to the technique used to package and protect the component during shipping and handling. It encompasses various forms including tape and reel, tray, tube, or bulk packaging, each suited for different types of components and manufacturing processes. The choice of packing method can affect the ease of handling, storage, and the efficiency of assembly in automated processes. Additionally, it plays a crucial role in ensuring the reliability and integrity of the components until they are used in electronic devices.
TAPE AND REEL 7" - Number of Functions1
- Terminal Pitch
The center distance from one pole to the next.
1.6mm - Configuration
The parameter "Configuration" in electronic components refers to the specific arrangement or setup of the components within a circuit or system. It encompasses how individual elements are interconnected and their physical layout. Configuration can affect the functionality, performance, and efficiency of the electronic system, and may influence factors such as signal flow, impedance, and power distribution. Understanding the configuration is essential for design, troubleshooting, and optimizing electronic devices.
SINGLE WITH BUILT-IN ZENER DIODE - Max Current Rating
The "Max Current Rating" parameter in electronic components refers to the maximum amount of electrical current that the component can safely handle without being damaged. It is an important specification to consider when designing or selecting components for a circuit, as exceeding the maximum current rating can lead to overheating, malfunction, or even permanent damage to the component. The max current rating is typically provided in amperes (A) and is determined by the component's internal construction, materials used, and thermal characteristics. It is crucial to ensure that the current flowing through the component does not exceed this specified limit to maintain the component's reliability and longevity.
400mA - Voltage - Forward (Vf) (Typ)
The parameter "Voltage - Forward (Vf) (Typ)" in electronic components refers to the typical forward voltage drop across the component when it is conducting current in the forward direction. It is a crucial characteristic of components like diodes and LEDs, indicating the minimum voltage required for the component to start conducting current. The forward voltage drop is typically specified as a typical value because it can vary slightly based on factors such as temperature and manufacturing tolerances. Designers use this parameter to ensure that the component operates within its specified voltage range and to calculate power dissipation in the component.
3.4V - Viewing Angle
the angle at which a display can be viewed with acceptable visual performance.
120° - Optoelectronic Device Type
Optoelectronic Device Type refers to the classification of electronic components that can both detect and emit light. These devices convert electrical signals into light or vice versa, making them essential for applications such as optical communication, sensing, and display technologies. Common types of optoelectronic devices include light-emitting diodes (LEDs), photodiodes, phototransistors, and laser diodes. Understanding the optoelectronic device type is crucial for selecting the appropriate component for a specific application based on factors such as wavelength, power output, and sensitivity.
SINGLE COLOR LED - Forward Current
Current which flows upon application of forward voltage.
350mA - Lens Style
In the context of electronic components, the parameter "Lens Style" typically refers to the design or shape of the lens used in optical components such as LEDs, photodiodes, or sensors. The lens style can affect the light output, beam angle, and overall performance of the component. Common lens styles include flat top, dome, narrow beam, wide beam, and diffused lenses. Choosing the appropriate lens style is important for achieving the desired light distribution and optical characteristics in electronic devices. Manufacturers often provide specifications on the lens style to help users select the most suitable component for their application.
Circular - Lumens/Watt @ Current - Test
Lumens/Watt @ Current - Test is a measurement used to evaluate the efficiency of light-emitting components, such as LEDs, under specific test conditions. It indicates the amount of luminous flux produced (in lumens) for every watt of electrical power consumed by the device at a given current level. This metric helps in assessing the brightness and energy efficiency of lighting solutions, allowing for better comparisons between different products and technologies. Higher values signify more efficient light sources that produce more light for less energy consumed.
67 lm/W - CRI (Color Rendering Index)
The Color Rendering Index (CRI) is a measurement of how accurately a light source can render colors compared to natural light. It is a scale from 0 to 100, with higher values indicating better color rendering. A CRI value of 100 means the light source can accurately reproduce all colors. A high CRI is important in applications where color accuracy is crucial, such as in photography, art galleries, and retail settings. It helps ensure that colors appear true and vibrant under the light source.
75 - Illumination Color
Illumination Color refers to the specific color of light emitted by an LED or display component when it is activated. It is an important parameter as it affects the visibility and aesthetics of the electronic device. Common illumination colors include red, green, blue, yellow, and white, among others. The chosen illumination color can influence user experience and product design, making it a critical consideration in electronics engineering.
White - Luminous Flux
the measure of the perceived power of light.
80 lm - Flux @ 25°C, Current - Test
Flux at 25°C, Current - Test refers to the amount of electrical current that flows through a material or component when tested under specified conditions at a temperature of 25 degrees Celsius. It indicates the performance and reliability of the electronic component under normal operating conditions. This parameter is crucial for evaluating the heat dissipation and efficiency of the component in various electronic applications.
80lm 80lm~90lm - Flux @ 85°C, Current - Test
The parameter "Flux @ 85°C, Current - Test" in electronic components refers to the measurement of the flow of electric current through a circuit or component when subjected to an elevated temperature of 85 degrees Celsius. It is often used to assess the performance and reliability of electronic materials and soldering processes under thermal stress. This parameter is critical for ensuring that components will function correctly in high-temperature environments, providing insights into their durability and operational effectiveness.
70lm - Height1.35mm
- Height Seated (Max)
Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.
0.085 2.15mm - Radiation Hardening
Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.
No - RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
ROHS3 Compliant