Grayhill Inc. 97C08ST
Grayhill Inc. 97C08ST
feed

Grayhill Inc. 97C08ST

Manufacturer No:

97C08ST

Manufacturer:

Grayhill Inc.

Utmel No:

999-97C08ST

Package:

-

ECAD Model:

Description:

GRAYHILL - 97C08ST - DIP / SIP Switch, Flush Slide, 8 Circuits, Slide, SMD, SPST, 24 VDC, 25 mA

Quantity:

Unit Price: $5.073830

Ext Price: $5.07

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 240

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $5.073830

    $5.07

  • 10

    $4.786632

    $47.87

  • 100

    $4.515691

    $451.57

  • 500

    $4.260085

    $2,130.04

  • 1000

    $4.018949

    $4,018.95

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
97C08ST information

Specifications
Product Comparison
Grayhill Inc. 97C08ST technical specifications, attributes, parameters and parts with similar specifications to Grayhill Inc. 97C08ST.
  • Type
    Parameter
  • Factory Lead Time
    16 Weeks
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Surface Mount
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Number of Pins
    3
  • Material

    In electronic components, the parameter "Material" refers to the substance or material used in the construction of the component. The choice of material is crucial as it directly impacts the component's performance, durability, and other characteristics. Different materials have varying properties such as conductivity, resistance to heat, corrosion resistance, and mechanical strength, which determine how the component functions in a circuit. Common materials used in electronic components include metals like copper and aluminum, semiconductors like silicon, insulators like ceramics and plastics, and various alloys. Selecting the appropriate material is essential for designing reliable and efficient electronic components.

    Nylon, Thermoplastic
  • Body Material

    The parameter "Body Material" in electronic components refers to the material used to construct the physical body or casing of the component. This material plays a crucial role in determining the component's durability, thermal conductivity, electrical insulation properties, and resistance to environmental factors such as moisture, heat, and mechanical stress. Common body materials for electronic components include plastics, ceramics, metals, and composites. Selecting the appropriate body material is essential to ensure the reliable performance and longevity of the electronic component in various operating conditions.

    Polyamide (PA), Nylon
  • Actuator Material

    In smart material system, actuator materials have the ability to change the shape, stiffness, position, natural frequency, damping and/or other mechanical characteristics of the smart material systems in response to changes in temperature, electric field and/or magnetic field.

    Nylon, Thermoplastic
  • ActuatorColor
    WHITE
  • Contact Materials
    Copper Alloy
  • Voltage Rated

    RATED voltage is the voltage on the nameplate - the "design point" for maximum power throughput and safe thermal operation.

    24VDC
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~85°C
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tube
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    97
  • Published
    2003
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e4
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    yes
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Termination

    Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.

    Gull Wing
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Number of Positions
    8
  • Additional Feature

    Any Feature, including a modified Existing Feature, that is not an Existing Feature.

    LOW PROFILE
  • Capacitance

    Capacitance is a fundamental electrical property of electronic components that describes their ability to store electrical energy in the form of an electric field. It is measured in farads (F) and represents the ratio of the amount of electric charge stored on a component to the voltage across it. Capacitors are passive components that exhibit capacitance and are commonly used in electronic circuits for various purposes such as filtering, energy storage, timing, and coupling. Capacitance plays a crucial role in determining the behavior and performance of electronic systems by influencing factors like signal propagation, frequency response, and power consumption.

    5pF
  • Voltage - Rated DC

    Voltage - Rated DC is a parameter that specifies the maximum direct current (DC) voltage that an electronic component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component in a circuit. Exceeding the rated DC voltage can lead to overheating, breakdown, or even permanent damage to the component. It is important to carefully consider this parameter when designing or selecting components for a circuit to prevent any potential issues related to voltage overload.

    24V
  • Pitch

    In electronic components, "Pitch" refers to the distance between the center of one pin or lead to the center of the adjacent pin or lead on a component, such as an integrated circuit (IC) or a connector. It is a crucial parameter as it determines the spacing and alignment of the pins or leads on a component, which in turn affects how the component can be mounted on a circuit board or connected to other components.The pitch measurement is typically expressed in millimeters (mm) or inches (in) and plays a significant role in determining the overall size and layout of a circuit board. Components with different pitches may require specific types of circuit boards or connectors to ensure proper alignment and connection. Designers must carefully consider the pitch of components when designing circuit layouts to ensure compatibility and proper functionality of the electronic system.

    0.050 1.27mm Half
  • Orientation

    In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.

    Straight
  • Terminal Pitch

    The center distance from one pole to the next.

    1.27mm
  • Depth

    In electronic components, "Depth" typically refers to the measurement of the distance from the front to the back of the component. It is an important parameter to consider when designing or selecting components for a project, as it determines how much space the component will occupy within a circuit or device. The depth of a component can impact the overall size and layout of the circuit board or enclosure in which it will be installed. It is usually specified in millimeters or inches and is crucial for ensuring proper fit and functionality within the intended application.

    6.71mm
  • Current Rating

    Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.

    25mA
  • Contact Finish

    Contact finish refers to the surface coating or treatment applied to the electrical contacts of electronic components. This finish is crucial for ensuring reliable electrical connections and preventing corrosion or oxidation of the contacts. Common contact finishes include gold, silver, tin, and nickel, each offering different levels of conductivity, durability, and resistance to environmental factors. The choice of contact finish depends on the specific application requirements, such as operating conditions, cost considerations, and compatibility with other components in the circuit. Selecting the appropriate contact finish is essential for maintaining the performance and longevity of electronic devices.

    Gold
  • Termination Style

    "Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.

    Gull Wing
  • Body Breadth

    Body breadth in electronic components refers to the width of the physical body of a component, such as a resistor, capacitor, or integrated circuit. This measurement is crucial for ensuring proper fit within a circuit board or enclosure. It can affect the component's thermal performance, mechanical stability, and overall compatibility with other components in a design. Body breadth is typically specified in millimeters or inches and is an important factor in the selection and design of electronic assemblies.

    4.5 mm
  • Actuator Type

    The actuator type in electronic components refers to the specific mechanism or technology used to convert electrical energy into physical motion or action. Common actuator types include electric motors, solenoids, piezoelectric actuators, and hydraulic or pneumatic cylinders. Each type has its unique characteristics, advantages, and applications, allowing them to be utilized in diverse systems such as robotics, automation, and control processes. The choice of actuator type often influences the performance, efficiency, and functionality of the overall system.

    Slide (Standard)
  • Circuit

    The parameter "Circuit" in electronic components refers to the interconnected arrangement of various electronic elements such as resistors, capacitors, inductors, and active devices like transistors. It defines the path through which electric current flows and establishes the operational behavior of the components within that system. Circuits can be classified as analog or digital, depending on the type of signals they handle, and can vary in complexity from simple series or parallel configurations to intricate designs used in advanced applications.

    SPST
  • Contact Resistance

    Contact resistance refers to the resistance encountered at the point of contact between two conductive materials or components. It is a measure of how well the two materials make electrical contact with each other. High contact resistance can lead to voltage drops, power losses, and inefficient electrical connections. It is typically measured in ohms and is an important parameter to consider in electronic components such as connectors, switches, and relays. Lower contact resistance is desirable for ensuring reliable and efficient electrical connections in electronic circuits.

    100mOhm
  • Insulation Resistance

    The measurement of insulation resistance is carried out by means of a megohmmeter – high resistance range ohmmeter. A general rule-of-thumb is 10 Megohm or more.

    100MOhm
  • Contact Current(DC)-Max

    Contact Current (DC) - Max is a parameter in electronic components that specifies the maximum amount of direct current (DC) that can safely flow through the contact or connection point without causing damage or failure. This parameter is crucial for ensuring the reliability and longevity of the component, as exceeding the maximum contact current rating can lead to overheating, arcing, or even permanent damage. Designers and engineers must carefully consider this specification when selecting components for a circuit to prevent potential issues and ensure proper functionality. It is important to adhere to the manufacturer's guidelines and specifications to avoid any potential risks associated with exceeding the maximum contact current rating.

    0.025A
  • Max Current Rating

    The "Max Current Rating" parameter in electronic components refers to the maximum amount of electrical current that the component can safely handle without being damaged. It is an important specification to consider when designing or selecting components for a circuit, as exceeding the maximum current rating can lead to overheating, malfunction, or even permanent damage to the component. The max current rating is typically provided in amperes (A) and is determined by the component's internal construction, materials used, and thermal characteristics. It is crucial to ensure that the current flowing through the component does not exceed this specified limit to maintain the component's reliability and longevity.

    25mA
  • Number of Poles
    1
  • Max Voltage Rating (DC)

    The parameter "Max Voltage Rating (DC)" in electronic components refers to the maximum direct current (DC) voltage that the component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component within an electrical circuit. Exceeding the maximum voltage rating can lead to breakdown or failure of the component, potentially causing damage to the entire circuit. It is important to carefully consider and adhere to the specified max voltage rating when designing or working with electronic circuits to prevent any potential risks or malfunctions.

    24V
  • Mechanical Life

    Mechanical life is a parameter used to measure the durability and reliability of electronic components, particularly mechanical switches and connectors. It refers to the number of mechanical operations or cycles that a component can withstand before it fails or exhibits degraded performance. Components with a higher mechanical life rating are considered more robust and long-lasting, making them suitable for applications where frequent switching or physical stress is expected. Manufacturers typically test and specify the mechanical life of their components to help users understand their expected lifespan and performance under various operating conditions.

    1,000 Cycles
  • Lead/Base Style

    The parameter "Lead/Base Style" in electronic components refers to the physical configuration of the leads or terminals of the component in relation to its base or body. This parameter describes how the leads are attached to the component and how they are positioned in relation to the base. Common lead/base styles include through-hole, surface mount, gull-wing, J-lead, and many others. Understanding the lead/base style is important for proper installation and connection of the component in a circuit, as different styles may require different soldering techniques or mounting considerations.

    Gull Wing
  • Switch Type

    Based on their characteristics, there are basically three types of switches: Linear switches, tactile switches and clicky switches.

    SLIDE DIP SWITCH
  • Contact Timing

    Contact Timing in electronic components refers to the specific moment when electrical contacts make or break during operation, impacting the overall performance and efficiency of a device. It is crucial for ensuring the proper synchronization of signals in circuits, particularly in relays and switches. Accurate contact timing minimizes signal distortion and reduces wear on components, thereby enhancing the reliability and longevity of electronic systems.

    TWO STEP
  • Number of Switch Sections
    8
  • Contact Function

    Contact function in electronic components refers to the specific role or purpose of the contact within the component. Contacts are the points where electrical connections are made between different parts of the component or between the component and an external circuit. The contact function can vary depending on the type of component and its intended use. For example, in a switch, the contact function is to open or close the circuit, while in a connector, the contact function is to establish a secure and reliable electrical connection between two components. Understanding the contact function is crucial for designing and using electronic components effectively in various applications.

    ON-OFF
  • Washable

    The parameter "Washable" in electronic components refers to the ability of a component to withstand cleaning processes without being damaged. This feature is particularly important for components used in environments where contaminants such as dust, dirt, or liquids may accumulate. Washable components are designed to tolerate exposure to cleaning agents and water, ensuring that their functionality and performance remain intact after maintenance procedures. This parameter is essential for ensuring reliability and longevity in diverse applications, especially in industries like automotive, aerospace, and consumer electronics.

    Yes
  • Actuator Level

    Actuator Level in electronic components refers to the level of control or actuation capability of a specific component within a system. This parameter indicates the extent to which the component can physically manipulate or control other parts of the system. Components with higher actuator levels typically have more advanced functionality and can perform more complex tasks within the system. Understanding the actuator level of electronic components is crucial for designing and implementing systems that require precise control and manipulation of various elements.

    Flush, Recessed
  • Solderability

    Solderability refers to the ability of a metal or material to be wetted by molten solder during the soldering process. It is a critical parameter in electronic components as it determines the quality of the solder joint formed between the component and the circuit board. Good solderability ensures that the solder forms a strong and reliable bond, while poor solderability can lead to issues such as cold solder joints or incomplete connections. Various factors can affect solderability, including the composition of the material, surface finish, and environmental conditions during storage and handling. Manufacturers often conduct solderability testing to ensure that components meet industry standards and perform reliably in electronic assemblies.

    WAVE
  • Body Color

    In electronic components, the parameter "Body Color" refers to the color of the physical casing or body of the component. This color is often used for identification and aesthetic purposes. The body color can vary depending on the manufacturer and the specific type of component. It is important to consider the body color when selecting and installing electronic components to ensure proper identification and compatibility within a circuit or system.

    BLACK
  • Washability

    Washability in electronic components refers to the ability of a component to withstand cleaning processes such as washing or rinsing without being damaged or negatively affected. This parameter is particularly important in industries where electronic components are exposed to contaminants or residues during manufacturing processes. Components with good washability can be safely cleaned using various methods such as water-based or solvent-based cleaning solutions without compromising their functionality or reliability. Manufacturers often provide washability ratings or guidelines to ensure proper cleaning procedures are followed to maintain the integrity of the electronic components.

    SOLVENT
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    Tape Seal
  • Length
    0.448 11.39mm
  • Width
    10.92mm
  • Actuator Length

    Actuator Length in electronic components refers to the physical length of the actuator, which is the part of the component responsible for initiating or controlling a mechanical action. The actuator length is an important parameter as it determines the range of motion or force that can be exerted by the component. In devices such as switches, valves, and motors, the actuator length directly impacts the efficiency and effectiveness of the component's operation. Designers and engineers consider the actuator length carefully to ensure that the component meets the required specifications and functions properly within the intended system.

    0m
  • Height Above Board

    Height Above Board is a parameter that refers to the distance between the bottom surface of an electronic component and the surface of the circuit board on which it is mounted. This measurement is important for determining the clearance and spacing requirements for the component to ensure proper assembly and functionality of the circuit board. It is typically specified in millimeters or inches and is crucial for ensuring that the component fits correctly on the board without interfering with other components or the overall design of the electronic system. Manufacturers provide this information in datasheets to help designers and engineers select the appropriate components for their applications.

    0.063 1.60mm
  • REACH SVHC

    The parameter "REACH SVHC" in electronic components refers to the compliance with the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation regarding Substances of Very High Concern (SVHC). SVHCs are substances that may have serious effects on human health or the environment, and their use is regulated under REACH to ensure their safe handling and minimize their impact.Manufacturers of electronic components need to declare if their products contain any SVHCs above a certain threshold concentration and provide information on the safe use of these substances. This information allows customers to make informed decisions about the potential risks associated with using the components and take appropriate measures to mitigate any hazards.Ensuring compliance with REACH SVHC requirements is essential for electronics manufacturers to meet regulatory standards, protect human health and the environment, and maintain transparency in their supply chain. It also demonstrates a commitment to sustainability and responsible manufacturing practices in the electronics industry.

    No SVHC
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    RoHS Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining
The three parts on the right have similar specifications to Grayhill Inc. & 97C08ST.
97C08ST Relevant information