

Hamlin P4KE62C
Manufacturer No:
P4KE62C
Tiny WHSLManufacturer:
Utmel No:
1037-P4KE62C
Package:
-
Description:
P4KE62C datasheet pdf and TVS - Diodes product details from Hamlin stock available at Utmel
Quantity:
Delivery:





Payment:











In Stock : Please Inquire
Please send RFQ , we will respond immediately.
United States
China
Canada
Japan
Russia
Germany
United Kingdom
Singapore
Italy
Hong Kong(China)
Taiwan(China)
France
Korea
Mexico
Netherlands
Malaysia
Austria
Spain
Switzerland
Poland
Thailand
Vietnam
India
United Arab Emirates
Afghanistan
Åland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua & Barbuda
Argentina
Armenia
Aruba
Australia
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius and Saba
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Cayman Islands
Central African Republic
Chad
Chile
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo
Congo (DRC)
Cook Islands
Costa Rica
Côte d’Ivoire
Croatia
Cuba
Curaçao
Cyprus
Czechia
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
French Guiana
French Polynesia
Gabon
Gambia
Georgia
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao(China)
Madagascar
Malawi
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Authority
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Portugal
Puerto Rico
Qatar
Réunion
Romania
Rwanda
Samoa
San Marino
São Tomé & Príncipe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Sudan
Sri Lanka
St Helena, Ascension, Tristan da Cunha
St. Barthélemy
St. Kitts & Nevis
St. Lucia
St. Martin
St. Pierre & Miquelon
St. Vincent & Grenadines
Sudan
Suriname
Svalbard & Jan Mayen
Sweden
Syria
Tajikistan
Tanzania
Timor-Leste
Togo
Tokelau
Tonga
Trinidad & Tobago
Tunisia
Turkey
Turkmenistan
Turks & Caicos Islands
Tuvalu
U.S. Outlying Islands
U.S. Virgin Islands
Uganda
Ukraine
Uruguay
Uzbekistan
Vanuatu
Vatican City
Venezuela
Wallis & Futuna
Yemen
Zambia
Zimbabwe
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Free Hanging (In-Line) - Mounting Feature
a process by which the operating system makes files and directories on a storage device (such as hard drive, CD-ROM, or network share) available for users to access via the computer's file system.
-- - Contact Shape
Contact shape in electronic components refers to the physical geometry of the interface where electrical connections are made. It plays a critical role in determining the quality and reliability of the connection, impacting factors such as resistance, current density, and heat dissipation. Various shapes, such as flat, cylindrical, or custom profiles, influence the contact area, enabling designers to optimize performance for specific applications. The contact shape also affects the mechanical stability of the connection, influencing wear and longevity.
Circular - Shell Material
The "Shell Material" parameter in electronic components refers to the material used to encase or cover the internal components of the device. This material is chosen based on various factors such as durability, heat resistance, electrical insulation properties, and environmental considerations. Common shell materials include plastics, metals, and ceramics, each offering different levels of protection and performance characteristics. The choice of shell material can impact the overall reliability, safety, and functionality of the electronic component in different operating conditions.
Composite - Insert Material
The parameter "Insert Material" in electronic components refers to the specific material used to create the insert portions of connectors or other components that facilitate assembly or enhance performance. This material is chosen for its electrical, thermal, and mechanical properties, which can influence the overall functionality and reliability of the component in its intended application. Common insert materials include plastics, ceramics, and metals, each selected based on the requirements of the environment in which the component will operate.
-- - Lead Free Status / RoHS Status--
- Contact Sizes20
- Manufacturer Part NumberP4KE62C
- Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-65°C ~ 200°C - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
MIL-DTL-38999 Series III, Tri-Start™ TV - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Bulk - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
-- - Connector Type
Connector Type in electronic components refers to the specific design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the physical shape, size, and layout of the connector, as well as the number and arrangement of pins or contacts. Common connector types include USB, HDMI, RJ45, and D-sub connectors, each serving different purposes and applications. Understanding the connector type is crucial for ensuring compatibility and proper functionality when connecting electronic devices together.
Plug Housing - TypeFor Female Sockets
- Number of Positions18
- Fastening Type
There are 5 Main Types of Fastening Type: Screws, Nails, Bolts, Anchors, Rivets.
Threaded - Contact Type
Contact Type in electronic components refers to the specific design and configuration of the electrical contacts used to establish connections between components or devices. The contact type determines how the electrical signals are transmitted between the components, and it can vary based on factors such as the application requirements, signal type, and environmental conditions. Common contact types include pin contacts, socket contacts, surface mount contacts, and wire-to-board contacts. Understanding the contact type is crucial for ensuring proper connectivity and reliable performance in electronic systems.
Crimp - Orientation
In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.
D - Shielding
Shielding in electronic components refers to the practice of enclosing or surrounding sensitive electronic circuits or components with a conductive material to protect them from electromagnetic interference (EMI) or radio frequency interference (RFI). The shielding material acts as a barrier that blocks or absorbs unwanted electromagnetic signals, preventing them from affecting the performance of the electronic device. Shielding can be achieved using materials such as metal enclosures, conductive coatings, or shielding tapes. Proper shielding is essential in electronic design to ensure the reliable operation of electronic devices in environments where electromagnetic interference is present.
Shielded - Ingress Protection
Ingress Protection rating (or just IP rating), is an international standard (IEC 60529) used to rate the degree of protection or sealing effectiveness in electrical enclosures against intrusion of objects, water, dust or accidental contact. It corresponds to the European standard EN 60529.
Environment Resistant - Shell Finish
Shell Finish in electronic components refers to the surface treatment or coating applied to the outer shell or casing of the component. This finish is designed to provide protection against environmental factors such as moisture, dust, and corrosion, as well as to enhance the component's appearance. Common types of shell finishes include nickel plating, anodizing, powder coating, and epoxy resin coating. The choice of shell finish depends on the specific requirements of the component, such as the operating environment, durability needs, and aesthetic considerations.
Electroless Nickel - Shell Size - Insert
The parameter "Shell Size - Insert" in electronic components refers to the physical size of the connector shell or housing that holds the insert or contact arrangement within the component. The shell size is typically specified by a numerical designation that corresponds to a specific size and configuration of the connector. This parameter is important for ensuring compatibility and proper fit between different components or devices that use the same type of connector. Manufacturers provide detailed specifications for shell size to help users select the appropriate connector for their specific application requirements.
15-18 - Housing Color
Housing color in electronic components refers to the color of the protective casing or enclosure that surrounds the component. It can play a role in visual identification, aiding in easy recognition during assembly or maintenance. Additionally, the housing color may also have implications for heat dissipation, aesthetic considerations, or regulatory compliance depending on the application or industry standards.
Silver - NoteContacts Not Included
- Polarization
In electronic components, polarization refers to the orientation or alignment of certain properties within the component. This property can affect the behavior and performance of the component in a circuit. For example, in capacitors, polarization refers to the alignment of the electric field within the dielectric material. Polarized capacitors, such as electrolytic capacitors, have a specific orientation for proper functioning. In other components like diodes, polarization refers to the direction of current flow, which is important for their correct operation. Understanding polarization is crucial for proper usage and integration of electronic components in circuits.
DO-204AL, DO-41, Axial - Shell Size, MIL
The parameter "Shell Size, MIL" in electronic components refers to the physical size of the component's outer shell or housing, measured in thousandths of an inch (mil). It is a standardized measurement used to ensure compatibility and interchangeability of components within a specific series or family. The shell size typically includes dimensions such as diameter, length, and overall shape of the component, and is important for determining how the component will fit into a system or assembly. Manufacturers provide shell size information to help users select the appropriate components for their specific application requirements.
-- - Power Line Protection
During fault, the only circuit breaker closest to the fault point should be tripped. The operating time of relay associated with protection of line should be as minimum as possible in order to prevent unnecessary tripping of circuit breakers associated with other healthy parts of power system.
400W - Voltage - Breakdown (Min)
Voltage - Breakdown (Min) is a parameter used to specify the minimum voltage level at which an electronic component, such as a diode or capacitor, will break down and allow current to flow through it uncontrollably. This breakdown voltage is a critical characteristic that determines the maximum voltage the component can withstand before failing. It is important to ensure that the applied voltage does not exceed this minimum breakdown voltage to prevent damage to the component and maintain proper functionality. Manufacturers provide this specification to help engineers and designers select components that are suitable for their intended applications and operating conditions.
53V - Power - Peak Pulse
Power - Peak Pulse refers to the maximum transient power level that an electronic component, such as a diode or a transzorber, can safely dissipate during a short-duration pulse. This parameter is critical in determining the component's ability to withstand voltage spikes or surges without failure. It is typically expressed in watts and is measured over a specific duration, usually in microseconds or nanoseconds, to reflect the component's performance under peak conditions. Understanding this parameter helps designers select appropriate components for applications where transient conditions are expected.
4.8A - Current - Peak Pulse (10/1000μs)
The parameter "Current - Peak Pulse (10/1000μs)" in electronic components refers to the maximum current that a device can handle during a transient overvoltage event with a specific waveform, typically a 10/1000μs pulse. This parameter is important for surge protection devices such as transient voltage suppressors (TVS) and varistors, as it indicates the device's ability to divert excess current away from sensitive components and protect them from damage. A higher peak pulse current rating signifies better surge protection capability, making the component more suitable for applications exposed to high-voltage transients or lightning strikes. Designers should carefully consider this parameter when selecting surge protection components to ensure reliable operation and protection of their electronic circuits.
89.25V - Voltage - Clamping (Max) @ Ipp
Voltage - Clamping (Max) @ Ipp refers to the maximum voltage that a component, such as a transient voltage suppressor or diode, can clamp when subjected to a specific peak current (Ipp). It indicates the upper limit of voltage that the component will allow to pass through, effectively protecting sensitive circuits from overvoltage conditions. This parameter is crucial for ensuring that devices are safeguarded against voltage spikes without being damaged. Designers use this specification to select appropriate components for overvoltage protection in their applications.
55.8V - Bidirectional Channels
Bidirectional channels in electronic components refer to pathways or connections that allow signal transmission in both directions. This means that data can flow from one device to another and back again, enabling two-way communication. Such channels are essential in applications like data buses, communication interfaces, and certain types of network protocols, facilitating efficient and dynamic interactions between components.
No - Includes
Includes is a parameter in electronic components that refers to the additional features or components that are included with the main product. This could include accessories, cables, software, or any other items that come packaged with the main electronic component. The "Includes" parameter is important for consumers to know exactly what they will be receiving when they purchase the product, and it can also help them determine the overall value and functionality of the product. Manufacturers often list the included items in the product description or packaging to provide transparency and help customers make informed purchasing decisions.
-- - Capacitance @ Frequency
Capacitance @ Frequency refers to the value of capacitance that a capacitor exhibits when subjected to an alternating current (AC) signal at a specific frequency. This parameter highlights how the capacitor's behavior changes with frequency, as capacitance can vary due to effects like equivalent series resistance (ESR) and loss factors. Typically measured in microfarads (µF) or picofarads (pF), this value is crucial for applications involving signal coupling, filtering, and timing where AC signals are prevalent. Understanding capacitance at different frequencies helps in selecting the right capacitor for specific circuit functions.
- - Voltage - Breakover
Voltage - Breakover is a parameter that refers to the voltage level at which a specific electronic component, such as a thyristor or a gas discharge tube, transitions from a high-resistance state to a low-resistance state. This transition is known as the breakover voltage, and it is a critical characteristic in determining the operating conditions and performance of the component. When the breakover voltage is reached, the component essentially "breaks over" and allows a significant current to flow through it. Understanding the breakover voltage is essential for designing and using electronic circuits effectively, as it helps ensure proper functionality and protection against voltage surges or overloads.
1 - Voltage - Breakdown
Voltage - Breakdown is a parameter that refers to the maximum voltage that an electronic component can withstand before it breaks down and allows current to flow through it uncontrollably. This breakdown voltage is a critical specification for components like diodes, transistors, and capacitors, as exceeding this voltage can lead to permanent damage or failure of the component. Manufacturers typically provide this information in datasheets to help engineers and designers ensure the proper operation and reliability of their circuits. It is important to consider the breakdown voltage when designing circuits to prevent overvoltage conditions that could compromise the performance and longevity of the components.
DO-204AL (DO-41) - Features
In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.
Coupling Nut, Self Locking - Material Flammability Rating
The Material Flammability Rating is a parameter used to indicate the flammability characteristics of materials used in electronic components. It is typically measured according to standards such as UL94, which classifies materials into different categories based on their flammability properties. The rating helps in assessing the fire safety of electronic devices and components, as materials with higher flammability ratings are more resistant to ignition and combustion. Manufacturers often specify the Material Flammability Rating of their components to ensure compliance with safety regulations and standards. It is important to consider this parameter when designing and selecting electronic components to minimize fire hazards and ensure the overall safety of the end product.
-- - RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
Tape & Reel (TR)
MMBT2222ALT1G
ON SemiconductorATMEGA8515L-8AU
Microchip TechnologySTM32F103RBT6
STMicroelectronicsATMEGA32A-AU
Microchip TechnologyATXMEGA128A1U-AU
Microchip TechnologySTM32F407VET6
STMicroelectronicsSTM32F405RGT6
STMicroelectronicsSTM32F103VBT6
STMicroelectronicsPIC18F46K20-I/PT
Microchip TechnologySTM8S003F3U6TR
STMicroelectronics