Kamaya Electric RMC1/16SK1873FTH
Kamaya Electric RMC1/16SK1873FTH
feed

Kamaya Electric RMC1/16SK1873FTH

Manufacturer No:

RMC1/16SK1873FTH

Manufacturer:

Kamaya Electric

Utmel No:

1343-RMC1/16SK1873FTH

Package:

0402 (1005 Metric)

ECAD Model:

Description:

RES 187K OHM 1% 1/10W 0402

Quantity:

Unit Price: $0.006582

Ext Price: $0.01

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 11

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $0.006582

    $0.01

  • 500

    $0.004840

    $2.42

  • 1000

    $0.004033

    $4.03

  • 2000

    $0.003700

    $7.40

  • 5000

    $0.003458

    $17.29

  • 10000

    $0.003217

    $32.17

  • 15000

    $0.003111

    $46.66

  • 50000

    $0.003059

    $152.95

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
RMC1/16SK1873FTH information

Specifications
Kamaya Electric RMC1/16SK1873FTH technical specifications, attributes, parameters and parts with similar specifications to Kamaya Electric RMC1/16SK1873FTH.
  • Type
    Parameter
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    0402 (1005 Metric)
  • Terminal Shape

    Terminal Shape in electronic components refers to the physical design of the connection points on the component that allow for electrical connections to be made. These terminals can come in various shapes such as pins, leads, pads, or terminals with specific configurations like surface mount or through-hole. The terminal shape is important as it determines how the component can be mounted on a circuit board or connected to other components. Different terminal shapes are used based on the specific requirements of the electronic circuit design and manufacturing process.

    WRAPAROUND
  • Mounting Feature

    a process by which the operating system makes files and directories on a storage device (such as hard drive, CD-ROM, or network share) available for users to access via the computer's file system.

    SURFACE MOUNT
  • Supplier Device Package

    The parameter "Supplier Device Package" in electronic components refers to the physical packaging or housing of the component as provided by the supplier. It specifies the form factor, dimensions, and layout of the component, which are crucial for compatibility and integration into electronic circuits and systems. The supplier device package information typically includes details such as the package type (e.g., DIP, SOP, QFN), number of pins, pitch, and overall size, allowing engineers and designers to select the appropriate component for their specific application requirements. Understanding the supplier device package is essential for proper component selection, placement, and soldering during the manufacturing process to ensure optimal performance and reliability of the electronic system.

    402
  • Number of Terminals
    2
  • Lead Free Status / RoHS Status
    --
  • Contact Materials
    Phosphor Bronze
  • Package
    Tape & Reel (TR)
  • Mfr
    Kamaya Inc.
  • Product Status
    Active
  • Package Style
    SMT
  • Operating Temperature-Min
    -55
  • Operating Temperature-Max
    155
  • Package Shape
    RECTANGULAR PACKAGE
  • Package Height
    0.35
  • Package Length
    1
  • Package Width
    0.5
  • Manufacturer Series
    RMC
  • Voltage, Rating
    50 V
  • Case Code - in
    0402
  • Case Code - mm
    1005
  • Maximum Operating Temperature

    the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    + 155 C
  • Minimum Operating Temperature
    - 55 C
  • Factory Pack QuantityFactory Pack Quantity
    10000
  • Mounting Styles
    PCB Mount
  • Manufacturer
    Kamaya
  • Brand
    Kamaya
  • RoHS
    Details
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    --
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Reel
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -55°C ~ 155°C
  • Size / Dimension

    In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.

    0.039 L x 0.020 W (1.00mm x 0.50mm)
  • Tolerance

    In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.

    ±1%
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    --
  • Number of Terminations
    2
  • Termination

    Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.

    Through Hole
  • Temperature Coefficient

    The resistance-change factor per degree Celsius of temperature change is called the temperature coefficient of resistance. This factor is represented by the Greek lower-case letter “alpha” (α). A positive coefficient for a material means that its resistance increases with an increase in temperature.

    ±100ppm/°C
  • Resistance

    Resistance is a fundamental property of electronic components that measures their opposition to the flow of electric current. It is denoted by the symbol "R" and is measured in ohms (Ω). Resistance is caused by the collisions of electrons with atoms in a material, which generates heat and reduces the flow of current. Components with higher resistance will impede the flow of current more than those with lower resistance. Resistance plays a crucial role in determining the behavior and functionality of electronic circuits, such as limiting current flow, voltage division, and controlling power dissipation.

    187 kOhms
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Matte Tin (Sn) - with Nickel (Ni) barrier
  • Composition

    Parameter "Composition" in electronic components refers to the specific materials and substances used in the construction of the component. It encompasses the chemical and physical elements that make up the component, influencing its electrical, thermal, and mechanical properties. The composition can affect the performance, reliability, and durability of the component in various applications. Understanding the composition is essential for optimizing the design and functionality of electronic devices.

    Thick Film
  • Applications

    The parameter "Applications" in electronic components refers to the specific uses or functions for which a component is designed. It encompasses various fields such as consumer electronics, industrial automation, telecommunications, automotive, and medical devices. Understanding the applications helps in selecting the right components for a particular design based on performance, reliability, and compatibility requirements. This parameter also guides manufacturers in targeting their products to relevant markets and customer needs.

    General Purpose
  • Power (Watts)

    The parameter "Power (Watts)" in electronic components refers to the amount of electrical energy consumed or dissipated by the component. It is a measure of how much energy the component can handle or generate. Power is typically measured in watts, which is a unit of power that indicates the rate at which energy is transferred. Understanding the power rating of electronic components is crucial for ensuring they operate within their specified limits to prevent overheating and potential damage. It is important to consider power requirements when designing circuits or selecting components to ensure proper functionality and reliability.

    0.1W, 1/10W
  • Subcategory
    Resistors
  • Power Rating

    The "Power Rating" of an electronic component refers to the maximum amount of power that the component can handle or dissipate without being damaged. It is typically measured in watts and is an important specification to consider when designing or selecting components for a circuit. Exceeding the power rating of a component can lead to overheating, malfunction, or even permanent damage. It is crucial to ensure that the power rating of each component in a circuit is sufficient to handle the power levels expected during normal operation to maintain the reliability and longevity of the electronic system.

    100 mW (1/10 W)
  • Pitch

    In electronic components, "Pitch" refers to the distance between the center of one pin or lead to the center of the adjacent pin or lead on a component, such as an integrated circuit (IC) or a connector. It is a crucial parameter as it determines the spacing and alignment of the pins or leads on a component, which in turn affects how the component can be mounted on a circuit board or connected to other components.The pitch measurement is typically expressed in millimeters (mm) or inches (in) and plays a significant role in determining the overall size and layout of a circuit board. Components with different pitches may require specific types of circuit boards or connectors to ensure proper alignment and connection. Designers must carefully consider the pitch of components when designing circuit layouts to ensure compatibility and proper functionality of the electronic system.

    0.100 (2.54mm)
  • Packing Method

    The packing method in electronic components refers to the technique used to package and protect the component during shipping and handling. It encompasses various forms including tape and reel, tray, tube, or bulk packaging, each suited for different types of components and manufacturing processes. The choice of packing method can affect the ease of handling, storage, and the efficiency of assembly in automated processes. Additionally, it plays a crucial role in ensuring the reliability and integrity of the components until they are used in electronic devices.

    TAPE, PAPER
  • Technology

    In the context of electronic components, the parameter "Technology" refers to the specific manufacturing process and materials used to create the component. This includes the design, construction, and materials used in the production of the component. The technology used can greatly impact the performance, efficiency, and reliability of the electronic component. Different technologies may be used for different types of components, such as integrated circuits, resistors, capacitors, and more. Understanding the technology behind electronic components is important for selecting the right components for a particular application and ensuring optimal performance.

    METAL GLAZE/THICK FILM
  • Construction

    Construction in electronic components refers to the design and materials used in the manufacturing of the components. It encompasses the physical structure, arrangement, and integration of various parts like substrates, conductors, and insulators. The construction impacts the performance, reliability, and thermal properties of the component, influencing how it interacts with electrical signals and other components in a circuit. Different construction techniques can also affect the size, weight, and cost of the electronic component.

    Chip
  • Resistor Type

    The parameter "Resistor Type" in electronic components refers to the specific material and construction of a resistor that determines its electrical properties and performance characteristics. There are various types of resistors available, such as carbon film, metal film, wirewound, and thick film resistors, each with its own advantages and applications. The resistor type affects factors like tolerance, temperature coefficient, power rating, and stability, which are important considerations when selecting a resistor for a particular circuit. Choosing the right resistor type is crucial for ensuring proper functionality and reliability of electronic devices and circuits.

    FIXED RESISTOR
  • Contact Finish

    Contact finish refers to the surface coating or treatment applied to the electrical contacts of electronic components. This finish is crucial for ensuring reliable electrical connections and preventing corrosion or oxidation of the contacts. Common contact finishes include gold, silver, tin, and nickel, each offering different levels of conductivity, durability, and resistance to environmental factors. The choice of contact finish depends on the specific application requirements, such as operating conditions, cost considerations, and compatibility with other components in the circuit. Selecting the appropriate contact finish is essential for maintaining the performance and longevity of electronic devices.

    Tin
  • Termination Style

    "Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.

    SMD/SMT
  • Rated Power Dissipation (P)

    Rated Power Dissipation (P) is a crucial parameter in electronic components that indicates the maximum amount of power the component can safely dissipate without being damaged. It is typically measured in watts and is important for determining the component's thermal management requirements. Exceeding the rated power dissipation can lead to overheating, reduced performance, or even permanent damage to the component. Designers must carefully consider the rated power dissipation when selecting and using electronic components to ensure reliable operation within specified limits.

    0.1
  • Working Voltage

    The "Working Voltage" parameter in electronic components refers to the maximum voltage that the component can safely handle while operating within its specified parameters. It is a crucial specification to consider when designing or selecting components for a circuit to prevent damage or failure. Exceeding the working voltage can lead to breakdown or insulation failure, potentially causing the component to malfunction or even become permanently damaged. It is important to always operate electronic components within their specified working voltage range to ensure reliable and safe operation of the circuit.

    50
  • Failure Rate

    the frequency with which an engineered system or component fails, expressed in failures per unit of time. It is usually denoted by the Greek letter λ (lambda) and is often used in reliability engineering.

    -
  • Size Code

    Size Code in electronic components refers to a standardized code or designation that indicates the physical dimensions of the component. This code helps in identifying the size and form factor of the component, making it easier for manufacturers, engineers, and designers to select and use the right components for their electronic circuits. The size code may include information such as the package type, lead spacing, and overall dimensions of the component. It is an important parameter to consider when designing circuit layouts and ensuring compatibility with other components on the circuit board.

    402
  • Rated Temperature

    The "Rated Temperature" of an electronic component refers to the maximum temperature at which the component is designed to operate safely and reliably over an extended period of time. This parameter is crucial for determining the operational limits of the component and ensuring its longevity and performance. Exceeding the rated temperature can lead to overheating, degradation of the component's materials, and ultimately failure. Manufacturers specify the rated temperature in the component's datasheet to guide engineers and designers in selecting appropriate operating conditions and implementing proper thermal management strategies. It is important to adhere to the rated temperature to prevent premature failure and ensure the overall reliability of the electronic system.

    70
  • Product Type

    a group of products which fulfill a similar need for a market segment or market as a whole.

    Thick Film Resistors
  • Product

    In the context of electronic components, the parameter "Product" typically refers to the specific item or device being discussed or analyzed. It can refer to a physical electronic component such as a resistor, capacitor, transistor, or integrated circuit. The product parameter may also encompass more complex electronic devices like sensors, displays, microcontrollers, or communication modules.Understanding the product parameter is crucial in electronics as it helps identify the characteristics, specifications, and functionality of the component or device in question. This information is essential for selecting the right components for a circuit design, troubleshooting issues, or comparing different products for a particular application. Manufacturers often provide detailed product datasheets that outline key specifications, performance characteristics, and application guidelines to assist engineers and designers in utilizing the component effectively.

    Thick Film Resistors General Purpose
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    --
  • Product Category

    a particular group of related products.

    Thick Film Resistors - SMD
  • Clip Style

    The parameter "Clip Style" in electronic components refers to the method or design used to secure a component in place within a circuit or assembly. This can include various types of clips, brackets, or connectors that hold the component firmly while allowing for electrical connections. The clip style is important for ensuring mechanical stability, ease of assembly, and reliability in performance under operational conditions. Different clip styles can affect the component's thermal management and accessibility for maintenance or replacement.

    SIL
  • Frame Width

    The parameter "Frame Width" in electronic components typically refers to the physical width of the component's frame or housing. It is an important specification as it determines the overall size and dimensions of the component, which can impact its compatibility with other components or devices. The frame width is usually measured in millimeters or inches and is crucial for ensuring proper fit and alignment within a circuit or system. Manufacturers provide this specification to help users select the right component for their specific application based on size requirements.

    0.713 (18.10mm)
  • Pin Length

    Pin length refers to the measurement of the protruding portion of an electronic component's pins that connect to a circuit board or other devices. It is crucial for ensuring proper fit and connection in various electronic applications. The pin length can influence the component's mounting style and its compatibility with different motherboard or socket designs. Variability in pin length can affect impedance, reliability, and overall performance of the component in a circuit.

    0.374 (9.50mm)
  • Clip Length

    Clip Length in electronic components refers to the maximum duration of a signal or waveform that can be accurately processed or transmitted without distortion or loss of information. It defines the time interval over which a signal can be maintained before it needs to be reset or refreshed. In applications like digital communications and signal processing, the clip length is crucial for ensuring data integrity and synchronization between transmitting and receiving devices.

    0.071 (1.80mm)
  • Clip Type

    Clip Type refers to the method used to attach electronic components to a circuit board or other surfaces. It determines how securely the component is held in place and can impact the assembly process, reliability, and reworkability of the component. Common Clip Types include through-hole, surface mount, and various mechanical fastening methods, each suited for different applications and design requirements.

    Y1
  • Height Seated (Max)

    Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.

    0.016 (0.40mm)
  • Width
    0.5 mm
  • Height
    0.35 mm
  • Length
    1 mm
  • Board Thickness

    Board Thickness in electronic components refers to the measurement of the thickness of the printed circuit board (PCB) on which the electronic components are mounted. The board thickness is an important parameter as it determines the overall mechanical strength and rigidity of the PCB. It also affects the electrical performance of the circuit, such as impedance control and signal integrity. Different applications may require different board thicknesses based on factors like the size of the components, the complexity of the circuit, and the environmental conditions in which the PCB will be used. Manufacturers typically provide a range of board thickness options to accommodate various design requirements.

    0.045 (1.14mm)
  • Frame Thickness

    Frame Thickness in electronic components refers to the measurement of the thickness of the physical frame or housing of the component. It is an important parameter as it determines the overall size and durability of the component. The frame thickness can impact the mechanical stability, heat dissipation, and overall performance of the electronic component. Manufacturers often provide specifications for frame thickness to ensure compatibility with mounting requirements and to ensure proper fit within electronic devices.

    0.014 (0.35mm)
  • Ratings

    The parameter "Ratings" in electronic components refers to the specified limits that define the maximum operational capabilities of a component. These ratings include voltage, current, power, temperature, and frequency, determining the conditions under which the component can function safely and effectively. Exceeding these ratings can lead to failure, damage, or unsafe operation, making it crucial for designers to adhere to them during component selection and usage.

    -
0 Similar Products Remaining