Littelfuse Inc. TMOV20RP275ML4B7
Littelfuse Inc. TMOV20RP275ML4B7
feed

Littelfuse Inc. TMOV20RP275ML4B7

Manufacturer No:

TMOV20RP275ML4B7

Manufacturer:

Littelfuse Inc.

Utmel No:

1475-TMOV20RP275ML4B7

Package:

Disc 20mm 3-Lead

ECAD Model:

Description:

VARISTOR 430V 10KA DISC 20MM

Quantity:

Unit Price: $1.411495

Ext Price: $1.41

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 15

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $1.411495

    $1.41

  • 10

    $1.331599

    $13.32

  • 100

    $1.256226

    $125.62

  • 500

    $1.185118

    $592.56

  • 1000

    $1.118036

    $1,118.04

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
TMOV20RP275ML4B7 information

Specifications
Documents & Media
Littelfuse Inc. TMOV20RP275ML4B7 technical specifications, attributes, parameters and parts with similar specifications to Littelfuse Inc. TMOV20RP275ML4B7.
  • Type
    Parameter
  • Factory Lead Time
    18 Weeks
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Radial, Through Hole
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    Disc 20mm 3-Lead
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -55°C~85°C TA
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Bulk
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    iTMOV®
  • Published
    2014
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    85°C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    -55°C
  • Capacitance

    Capacitance is a fundamental electrical property of electronic components that describes their ability to store electrical energy in the form of an electric field. It is measured in farads (F) and represents the ratio of the amount of electric charge stored on a component to the voltage across it. Capacitors are passive components that exhibit capacitance and are commonly used in electronic circuits for various purposes such as filtering, energy storage, timing, and coupling. Capacitance plays a crucial role in determining the behavior and performance of electronic systems by influencing factors like signal propagation, frequency response, and power consumption.

    900pF
  • Voltage - Rated AC

    Voltage - Rated AC is a parameter that specifies the maximum alternating current (AC) voltage that an electronic component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component within an electrical circuit. It is typically expressed in volts (V) and helps users determine the compatibility of the component with the voltage levels present in the circuit. Exceeding the rated AC voltage can lead to overheating, malfunction, or permanent damage to the component, so it is important to adhere to this specification when designing or using electronic systems.

    275V
  • Number of Circuits
    1
  • Max Voltage Rating (AC)

    The parameter "Max Voltage Rating (AC)" in electronic components refers to the maximum alternating current (AC) voltage that the component can safely handle without being damaged. This rating is important for ensuring the component's longevity and reliability in a circuit. Exceeding the maximum voltage rating can lead to overheating, breakdown, or even permanent damage to the component. It is crucial to select components with voltage ratings that are suitable for the intended application to prevent malfunctions or safety hazards in the circuit.

    275V
  • Max Voltage Rating (DC)

    The parameter "Max Voltage Rating (DC)" in electronic components refers to the maximum direct current (DC) voltage that the component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component within an electrical circuit. Exceeding the maximum voltage rating can lead to breakdown or failure of the component, potentially causing damage to the entire circuit. It is important to carefully consider and adhere to the specified max voltage rating when designing or working with electronic circuits to prevent any potential risks or malfunctions.

    350V
  • Clamping Voltage

    Clamping voltage is a term used in electronic components, particularly in devices like diodes and transient voltage suppressors. It refers to the maximum voltage level at which the component can effectively limit or clamp the voltage across its terminals. When the voltage across the component exceeds the clamping voltage, the component conducts and effectively limits the voltage to that level, protecting the circuit from overvoltage conditions. Clamping voltage is an important parameter to consider when selecting components for applications where voltage spikes or surges may occur, as it determines the level at which the component will start to protect the circuit.

    710V
  • Max Surge Current

    Surge current is a peak non repetitive current. Maximum (peak or surge) forward current = IFSM or if(surge), the maximum peak amount of current the diode is able to conduct in forward bias mode.

    10kA
  • Capacitance @ Frequency

    Capacitance @ Frequency refers to the value of capacitance that a capacitor exhibits when subjected to an alternating current (AC) signal at a specific frequency. This parameter highlights how the capacitor's behavior changes with frequency, as capacitance can vary due to effects like equivalent series resistance (ESR) and loss factors. Typically measured in microfarads (µF) or picofarads (pF), this value is crucial for applications involving signal coupling, filtering, and timing where AC signals are prevalent. Understanding capacitance at different frequencies helps in selecting the right capacitor for specific circuit functions.

    900pF @ 1MHz
  • Varistor Voltage (Max)

    The parameter "Varistor Voltage (Max)" refers to the maximum voltage that a varistor can withstand without breaking down. A varistor is a type of electronic component that is used to protect circuits from overvoltage conditions by rapidly changing its resistance in response to voltage fluctuations. When the voltage across a varistor exceeds its maximum rating, it will conduct current and dissipate the excess energy as heat, thereby protecting the circuit. It is important to select a varistor with a maximum voltage rating that is higher than the expected operating voltage to ensure reliable protection against overvoltage events.

    473V
  • Energy

    In electronic components, "Energy" refers to the amount of electrical power consumed or stored by the component during operation. It is a crucial parameter that determines the efficiency and performance of the component. Energy consumption is typically measured in units such as watt-hours (Wh) or joules (J), while energy storage is often quantified in terms of capacitance or battery capacity. Understanding the energy characteristics of electronic components is essential for designing efficient and reliable electronic systems.

    190J
  • Varistor Voltage (Min)

    Varistor Voltage (Min) is the minimum voltage at which a varistor begins to conduct significantly and clamp voltage spikes. It is a critical parameter as it indicates the threshold for the protective action of the varistor. When the voltage exceeds this level, the varistor transitions from a high-resistance state to a low-resistance state, providing a path to divert excess current. This feature helps protect electronic circuits from transient voltage surges.

    387V
  • Varistor Voltage (Typ)

    The parameter "Varistor Voltage (Typ)" in electronic components refers to the typical voltage at which a varistor begins to conduct significantly. A varistor is a type of voltage-dependent resistor that is commonly used to protect electronic circuits from voltage spikes and surges. When the voltage across a varistor exceeds its varistor voltage, the device starts to conduct and shunt the excess voltage to protect the circuit. The "Typ" designation indicates that the specified voltage is a typical value, and actual varistor voltages may vary slightly within a specified range. Understanding the varistor voltage is crucial for selecting the appropriate varistor for a given application to ensure effective protection against voltage transients.

    430V
  • Maximum AC Volts

    Maximum AC Volts is a parameter that specifies the maximum voltage level that an electronic component can safely handle when operating with an alternating current (AC) input. This parameter is crucial for ensuring the component's reliability and longevity, as exceeding the maximum AC voltage can lead to damage or failure. It is typically expressed in volts and is determined through testing and analysis of the component's electrical characteristics. Designers and engineers must carefully consider the maximum AC volts rating when selecting components for a circuit to prevent overloading and potential hazards.

    275V
  • Varistor Voltage

    A varistor is an electronic component that is used to protect circuits from overvoltage conditions. The varistor voltage, also known as the "clamping voltage" or "breakdown voltage," is the voltage level at which the varistor begins to conduct significantly and divert excess current away from the circuit. When the voltage across the varistor exceeds its varistor voltage, the varistor's resistance decreases rapidly, allowing it to absorb the excess energy and protect the circuit components. Varistor voltage is an important parameter to consider when selecting a varistor for a specific application, as it determines the level of overvoltage protection provided by the component.

    430V
  • Maximum DC Volts

    Maximum DC Volts is a parameter that specifies the maximum voltage that an electronic component can safely handle when operating with direct current (DC) power. This value is crucial for ensuring the component's longevity and preventing damage due to overvoltage. Exceeding the maximum DC voltage rating can lead to permanent damage or failure of the component. It is important to carefully consider this parameter when designing or selecting electronic components for a circuit to ensure proper functionality and reliability.

    350V
  • Current - Surge

    The parameter "Current - Surge" in electronic components refers to the maximum current that a component can handle for a short duration without being damaged. Surge current is typically higher than the component's rated continuous current and is often associated with transient events such as power surges or inrush currents during startup. It is important to consider the surge current rating when designing or selecting components to ensure they can withstand sudden spikes in current without failing. Exceeding the surge current rating can lead to overheating, component damage, or even system failure.

    10kA
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    Thermally Protected
  • Diameter

    In electronic components, the parameter "Diameter" typically refers to the measurement of the width of a circular component, such as a resistor, capacitor, or inductor. It is a crucial dimension that helps determine the physical size and fit of the component within a circuit or on a circuit board. The diameter is usually measured in millimeters (mm) or inches (in) and is important for ensuring proper placement and soldering of the component during assembly. Understanding the diameter of electronic components is essential for selecting the right size for a specific application and ensuring compatibility with other components and the overall design of the circuit.

    20mm
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Littelfuse Inc. TMOV20RP275ML4B7.