

Mini-Circuits ZC4PD-18-S+
Manufacturer No:
ZC4PD-18-S+
Tiny WHSLManufacturer:
Utmel No:
1642-ZC4PD-18-S+
Package:
-
Description:
ZC4PD Ceramic Capacitor
Quantity:
Unit Price: $150.726057
Ext Price: $150.73
Delivery:





Payment:











In Stock : 2319
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$150.726057
$150.73
10
$142.194393
$1,421.94
100
$134.145654
$13,414.57
500
$126.552504
$63,276.25
1000
$119.389155
$119,389.16
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- RoHSDetails
- Minimum Operating Temperature- 55 C
- Maximum Operating Temperature
the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.
+ 100 C - MountingChassis Mount
- Factory Pack QuantityFactory Pack Quantity1
- Package DescriptionROHS COMPLIANT, CASE Z184
- Operating Temperature-Min-55 °C
- Operating Temperature-Max100 °C
- Rohs CodeYes
- Operating Frequency (Max)1800 MHz
- Manufacturer Part NumberZC4PD-18-S+
- Insertion Loss-Max0.8 dB
- Part Life Cycle CodeActive
- Ihs ManufacturerMINI-CIRCUITS
- Risk Rank1.37
- Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Tray - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
ZC4PD - JESD-609 Code
The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.
e0 - Pbfree Code
The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.
No - ECCN Code
An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.
EAR99 - TypeDC Pass Power Splitter / Combiner
- Terminal Finish
Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.
Tin/Lead (Sn/Pb) - Additional Feature
Any Feature, including a modified Existing Feature, that is not an Existing Feature.
SMA, ISOLATION-MIN (DB):18 - Construction
Construction in electronic components refers to the design and materials used in the manufacturing of the components. It encompasses the physical structure, arrangement, and integration of various parts like substrates, conductors, and insulators. The construction impacts the performance, reliability, and thermal properties of the component, influencing how it interacts with electrical signals and other components in a circuit. Different construction techniques can also affect the size, weight, and cost of the electronic component.
COAXIAL - Reach Compliance Code
Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.
unknown - Frequency
In electronic components, the parameter "Frequency" refers to the rate at which a signal oscillates or cycles within a given period of time. It is typically measured in Hertz (Hz) and represents how many times a signal completes a full cycle in one second. Frequency is a crucial aspect in electronic components as it determines the behavior and performance of various devices such as oscillators, filters, and communication systems. Understanding the frequency characteristics of components is essential for designing and analyzing electronic circuits to ensure proper functionality and compatibility with other components in a system.
1.8 GHz - Termination Style
"Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.
Connector - Impedance
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.
50 Ohms - Frequency Range
A continuous range or spectrum of frequencies that extends from one limiting frequency to another.
1 GHz to 1.8 GHz - RF/Microwave Device Type
The parameter "RF/Microwave Device Type" in electronic components refers to the specific type or category of devices designed to operate within the radio frequency (RF) and microwave frequency ranges. These devices are engineered to handle high-frequency signals and are commonly used in various applications such as wireless communication, radar systems, satellite communication, and more. Examples of RF/Microwave device types include amplifiers, filters, mixers, oscillators, antennas, and transceivers. Understanding the RF/Microwave device type is crucial for selecting the appropriate component that meets the requirements of a particular RF system or application.
COMBINER - Insertion Loss
the loss of signal power resulting from the insertion of a device in a transmission line or optical fiber and is usually expressed in decibels (dB).
0.3 dB - Operating Frequency-Min
Operating Frequency-Min is a parameter in electronic components that specifies the minimum frequency at which the component can function reliably. This parameter is crucial for determining the performance and compatibility of the component within a given system or circuit. It indicates the lowest frequency at which the component can operate without experiencing issues such as signal degradation, timing errors, or malfunctions. Designers and engineers use this specification to ensure that the component will meet the required performance criteria under specific operating conditions.
1000 MHz - VSWR-Max
VSWR-Max stands for Voltage Standing Wave Ratio Maximum, which is a parameter used in electronic components, particularly in RF and microwave applications. It measures how effectively power is transmitted from a source through a transmission line to a load, indicating the level of reflected power due to impedance mismatches. A lower VSWR-Max value signifies better impedance matching and higher efficiency, while a higher value indicates poor matching, leading to greater signal reflections and potential performance issues. Manufacturers specify VSWR-Max to help ensure components operate within acceptable limits for optimal functionality.
1.45 - Input Power-Max (CW)
Input Power-Max (CW) is a parameter used to specify the maximum continuous wave power that an electronic component can handle without being damaged. This parameter is crucial in determining the power handling capability of the component under continuous wave operation. It is typically measured in watts and provides important information for designing circuits and systems to ensure that the component operates within its safe power limits. Exceeding the specified Input Power-Max (CW) can lead to overheating, degradation, or even permanent damage to the component.
40 dBm - Characteristic Impedance
Characteristic impedance is a fundamental property of transmission lines and refers to the specific impedance that a transmission line presents to an electrical wave propagating along it. It is determined by the physical parameters of the transmission line, including its inductance and capacitance per unit length. When the line is terminated with a load that matches its characteristic impedance, maximum power transfer occurs, minimizing reflections and signal losses. In high-frequency applications, maintaining the characteristic impedance is crucial for signal integrity and performance.
50 Ω - Product
In the context of electronic components, the parameter "Product" typically refers to the specific item or device being discussed or analyzed. It can refer to a physical electronic component such as a resistor, capacitor, transistor, or integrated circuit. The product parameter may also encompass more complex electronic devices like sensors, displays, microcontrollers, or communication modules.Understanding the product parameter is crucial in electronics as it helps identify the characteristics, specifications, and functionality of the component or device in question. This information is essential for selecting the right components for a circuit design, troubleshooting issues, or comparing different products for a particular application. Manufacturers often provide detailed product datasheets that outline key specifications, performance characteristics, and application guidelines to assist engineers and designers in utilizing the component effectively.
Power Dividers
MCP73812T-420I/OT
Microchip TechnologyAS176-59LF
Skyworks Solutions Inc.AD831AP-REEL7
Analog Devices Inc.HMC410AMS8GETR
Analog Devices Inc.GD32F103CBT6
GigaDeviceTZC3P300A110R00
Murata Electronics19-217/GHC-YR1S2/3T
Everlight Electronics Co LtdEMIF04-1502M8
STMicroelectronicsHMC284MS8GE
Analog Devices Inc.LM301AN
ON Semiconductor