

Murata Power Solutions 19R153C
Manufacturer No:
19R153C
Tiny WHSLManufacturer:
Utmel No:
1685-19R153C
Package:
-
Description:
19R153C datasheet pdf and Fixed Inductors product details from Murata Power Solutions stock available at Utmel
Quantity:
Unit Price: $1.670747
Ext Price: $1.67
Delivery:





Payment:











In Stock : 10
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$1.670747
$1.67
10
$1.576176
$15.76
100
$1.486958
$148.70
500
$1.402791
$701.40
1000
$1.323388
$1,323.39
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Mount
In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.
Radial, Through Hole - Shape/Size Description
Shape/Size Description in electronic components refers to the physical dimensions and geometric characteristics of a component. This includes parameters such as length, width, height, and overall form factor, which can affect how the component fits within a circuit board or electronic enclosure. Proper identification of Shape/Size Description is crucial for ensuring compatibility with other components and for optimizing space in design layouts.
CYLINDRICAL PACKAGE - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Bulk - Tolerance
In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.
10% - JESD-609 Code
The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.
e3 - Pbfree Code
The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.
yes - Number of Terminations2
- ECCN Code
An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.
EAR99 - TypeGeneral Purpose
- Terminal Finish
Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.
Bright Tin (Sn) - Max Operating Temperature
The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.
95°C - Min Operating Temperature
The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.
-40°C - Composition
Parameter "Composition" in electronic components refers to the specific materials and substances used in the construction of the component. It encompasses the chemical and physical elements that make up the component, influencing its electrical, thermal, and mechanical properties. The composition can affect the performance, reliability, and durability of the component in various applications. Understanding the composition is essential for optimizing the design and functionality of electronic devices.
Wirewound - HTS Code
HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.
8504.50.80.00 - Shielding
Shielding in electronic components refers to the practice of enclosing or surrounding sensitive electronic circuits or components with a conductive material to protect them from electromagnetic interference (EMI) or radio frequency interference (RFI). The shielding material acts as a barrier that blocks or absorbs unwanted electromagnetic signals, preventing them from affecting the performance of the electronic device. Shielding can be achieved using materials such as metal enclosures, conductive coatings, or shielding tapes. Proper shielding is essential in electronic design to ensure the reliable operation of electronic devices in environments where electromagnetic interference is present.
Unshielded - Number of Functions1
- Current Rating
Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.
4.8A - Lead Pitch
Lead pitch in electronic components refers to the distance between the center of one lead (or pin) of a component to the center of the adjacent lead. It is an important parameter to consider when designing and assembling electronic circuits, as it determines the spacing required on a circuit board for proper placement and soldering of the component. Lead pitch is typically specified in millimeters or inches and can vary depending on the type of component, such as integrated circuits, resistors, capacitors, and connectors. Choosing the correct lead pitch ensures proper alignment and connection of components on a circuit board, ultimately affecting the functionality and reliability of the electronic device.
6mm - Inductance
Inductance is a property of an electrical component that quantifies its ability to store energy in a magnetic field when electric current flows through it. It is measured in henries and indicates how much voltage is induced in the component as a result of a change in current. Inductance is an essential characteristic in coils, inductors, and transformers, affecting the behavior of electrical circuits, particularly in alternating current applications. Higher inductance values usually correlate with larger coils or more turns of wire in the component.
15 μH - Test Frequency
a statistical procedure for assessing data that contain counts or the numbers of occurrences of various categories or classes.
1kHz - Max DC Current
Max DC Current refers to the maximum amount of direct current (DC) that an electronic component can safely handle without being damaged. This parameter is crucial for determining the operational limits of the component and ensuring that it functions within its specified range. Exceeding the maximum DC current rating can lead to overheating, performance degradation, or even permanent damage to the component. It is important to carefully consider this parameter when designing circuits or selecting components to ensure reliable and safe operation.
4.8A - Inductor Application
Inductor application refers to the various uses of inductors in electronic circuits. Inductors are passive components that store energy in a magnetic field when electrical current passes through them. They are commonly used for filtering, energy storage, and in oscillators. Inductors also play a crucial role in inductive coupling and in transforming voltage levels in power supplies and signal processing applications. Their ability to resist changes in current makes them essential for managing current flow and reducing noise in electronic systems.
POWER INDUCTOR - Lead/Base Style
The parameter "Lead/Base Style" in electronic components refers to the physical configuration of the leads or terminals of the component in relation to its base or body. This parameter describes how the leads are attached to the component and how they are positioned in relation to the base. Common lead/base styles include through-hole, surface mount, gull-wing, J-lead, and many others. Understanding the lead/base style is important for proper installation and connection of the component in a circuit, as different styles may require different soldering techniques or mounting considerations.
Radial - DC Resistance (DCR) - Parallel
DC Resistance (DCR) - Parallel refers to the measurement of resistance in an electronic component when it is subjected to direct current in a parallel configuration. In this configuration, the total resistance is calculated by taking the reciprocal of the sum of the reciprocals of individual resistances. This parameter is crucial for understanding how components behave in a circuit, as it affects current distribution and overall circuit performance. Lower DCR values typically indicate better conductivity, which can lead to increased efficiency in electronic applications.
22mOhm - Inductance-Nom (L)
Inductance-Nom (L) is a parameter used to describe the nominal inductance of an electronic component, typically an inductor. Inductance is a property of a component that represents its ability to store energy in a magnetic field when a current passes through it. The unit of inductance is the henry (H). The nominal inductance value indicates the expected or specified inductance of the component under normal operating conditions. It is an important parameter to consider when designing circuits that require specific inductance values for proper functionality.
15 μH - Diameter
In electronic components, the parameter "Diameter" typically refers to the measurement of the width of a circular component, such as a resistor, capacitor, or inductor. It is a crucial dimension that helps determine the physical size and fit of the component within a circuit or on a circuit board. The diameter is usually measured in millimeters (mm) or inches (in) and is important for ensuring proper placement and soldering of the component during assembly. Understanding the diameter of electronic components is essential for selecting the right size for a specific application and ensuring compatibility with other components and the overall design of the circuit.
12mm - Height21mm
- Height Seated (Max)
Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.
21.0058mm - Length21mm
- Radiation Hardening
Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.
No - RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
RoHS Compliant
LQH2HPN4R7MGRL
Murata ElectronicsLQH3NPN4R7MMEL
Murata ElectronicsLQM21PN4R7MGHL
Murata ElectronicsLQH3NPN100MJRL
Murata Electronics1217AS-H-330M=P3
Murata ElectronicsDFE201612E-R47M=P2
Murata Electronics1285AS-H-R56M=P2
Murata ElectronicsLQW15AN8N2G00D
Murata ElectronicsLQP03TN8N2H02D
Murata ElectronicsLQG15HS27NJ02D
Murata Electronics