NTE Electronics, Inc. NTE1V095
NTE Electronics, Inc. NTE1V095
feed

NTE Electronics, Inc. NTE1V095

Manufacturer No:

NTE1V095

Utmel No:

1780-NTE1V095

Package:

Disc 8.5mm

ECAD Model:

Description:

Varistor, 125V, 7J, Through Hole Mount

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
NTE1V095 information

Specifications
NTE Electronics, Inc. NTE1V095 technical specifications, attributes, parameters and parts with similar specifications to NTE Electronics, Inc. NTE1V095.
  • Type
    Parameter
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    Disc 8.5mm
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    NO
  • Terminal Shape

    Terminal Shape in electronic components refers to the physical design of the connection points on the component that allow for electrical connections to be made. These terminals can come in various shapes such as pins, leads, pads, or terminals with specific configurations like surface mount or through-hole. The terminal shape is important as it determines how the component can be mounted on a circuit board or connected to other components. Different terminal shapes are used based on the specific requirements of the electronic circuit design and manufacturing process.

    WIRE
  • Mounting Feature

    a process by which the operating system makes files and directories on a storage device (such as hard drive, CD-ROM, or network share) available for users to access via the computer's file system.

    THROUGH HOLE MOUNT
  • Number of Terminals
    2
  • Manufacturer Part Number
    NTE1V095
  • Manufacturer
    NTE Electronics
  • RoHS
    Compliant
  • Package
    Bag
  • Mfr
    NTE Electronics, Inc
  • Product Status
    Active
  • Package Style
    Radial
  • Operating Temperature-Min
    -40 °C
  • Operating Temperature-Max
    85 °C
  • Package Shape
    DISK PACKAGE
  • Part Life Cycle Code
    Active
  • Ihs Manufacturer
    NTE ELECTRONICS INC
  • Risk Rank
    2.03
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C ~ 85°C (TA)
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    -
  • Subcategory
    Non-linear Resistors
  • Technology

    In the context of electronic components, the parameter "Technology" refers to the specific manufacturing process and materials used to create the component. This includes the design, construction, and materials used in the production of the component. The technology used can greatly impact the performance, efficiency, and reliability of the electronic component. Different technologies may be used for different types of components, such as integrated circuits, resistors, capacitors, and more. Understanding the technology behind electronic components is important for selecting the right components for a particular application and ensuring optimal performance.

    METAL OXIDE FILM
  • Resistor Type

    The parameter "Resistor Type" in electronic components refers to the specific material and construction of a resistor that determines its electrical properties and performance characteristics. There are various types of resistors available, such as carbon film, metal film, wirewound, and thick film resistors, each with its own advantages and applications. The resistor type affects factors like tolerance, temperature coefficient, power rating, and stability, which are important considerations when selecting a resistor for a particular circuit. Choosing the right resistor type is crucial for ensuring proper functionality and reliability of electronic devices and circuits.

    VARISTOR
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    unknown
  • Rated Power Dissipation (P)

    Rated Power Dissipation (P) is a crucial parameter in electronic components that indicates the maximum amount of power the component can safely dissipate without being damaged. It is typically measured in watts and is important for determining the component's thermal management requirements. Exceeding the rated power dissipation can lead to overheating, reduced performance, or even permanent damage to the component. Designers must carefully consider the rated power dissipation when selecting and using electronic components to ensure reliable operation within specified limits.

    0.25 W
  • Number of Circuits
    1
  • Terminal Placement

    Terminal Placement in electronic components refers to the physical location of the terminals or connection points on the component where external electrical connections are made. The placement of terminals is crucial for ensuring proper connectivity and functionality of the component within a circuit. It is important to consider factors such as spacing, orientation, and accessibility of terminals to facilitate easy installation and maintenance. Proper terminal placement also helps in reducing the risk of short circuits or other electrical issues. Overall, terminal placement plays a significant role in the design and usability of electronic components.

    RADIAL
  • Energy

    In electronic components, "Energy" refers to the amount of electrical power consumed or stored by the component during operation. It is a crucial parameter that determines the efficiency and performance of the component. Energy consumption is typically measured in units such as watt-hours (Wh) or joules (J), while energy storage is often quantified in terms of capacitance or battery capacity. Understanding the energy characteristics of electronic components is essential for designing efficient and reliable electronic systems.

    7J
  • Varistor Voltage (Typ)

    The parameter "Varistor Voltage (Typ)" in electronic components refers to the typical voltage at which a varistor begins to conduct significantly. A varistor is a type of voltage-dependent resistor that is commonly used to protect electronic circuits from voltage spikes and surges. When the voltage across a varistor exceeds its varistor voltage, the device starts to conduct and shunt the excess voltage to protect the circuit. The "Typ" designation indicates that the specified voltage is a typical value, and actual varistor voltages may vary slightly within a specified range. Understanding the varistor voltage is crucial for selecting the appropriate varistor for a given application to ensure effective protection against voltage transients.

    150 V
  • Maximum AC Volts

    Maximum AC Volts is a parameter that specifies the maximum voltage level that an electronic component can safely handle when operating with an alternating current (AC) input. This parameter is crucial for ensuring the component's reliability and longevity, as exceeding the maximum AC voltage can lead to damage or failure. It is typically expressed in volts and is determined through testing and analysis of the component's electrical characteristics. Designers and engineers must carefully consider the maximum AC volts rating when selecting components for a circuit to prevent overloading and potential hazards.

    95 V
  • Maximum DC Volts

    Maximum DC Volts is a parameter that specifies the maximum voltage that an electronic component can safely handle when operating with direct current (DC) power. This value is crucial for ensuring the component's longevity and preventing damage due to overvoltage. Exceeding the maximum DC voltage rating can lead to permanent damage or failure of the component. It is important to carefully consider this parameter when designing or selecting electronic components for a circuit to ensure proper functionality and reliability.

    125 V
  • Current - Surge

    The parameter "Current - Surge" in electronic components refers to the maximum current that a component can handle for a short duration without being damaged. Surge current is typically higher than the component's rated continuous current and is often associated with transient events such as power surges or inrush currents during startup. It is important to consider the surge current rating when designing or selecting components to ensure they can withstand sudden spikes in current without failing. Exceeding the surge current rating can lead to overheating, component damage, or even system failure.

    12 kA
  • Circuit DC Voltage-Max

    Circuit DC Voltage-Max refers to the maximum direct current (DC) voltage that a specific electronic component or circuit can safely handle without being damaged. This parameter is crucial for ensuring the reliability and longevity of the component or circuit. Exceeding the maximum DC voltage rating can lead to overheating, breakdown, or even permanent damage to the component. It is important to carefully consider this specification when designing or selecting electronic components to prevent potential failures and ensure proper functionality within the specified voltage limits.

    125 V
  • Circuit RMS Voltage-Max

    Circuit RMS Voltage-Max refers to the maximum root mean square voltage that an electronic component or circuit can handle safely without degradation or failure. RMS voltage is a statistical measure of the magnitude of a varying voltage, representing the equivalent DC voltage that would deliver the same power to a load. The Circuit RMS Voltage-Max is crucial in ensuring that components operate within their voltage limits, preventing breakdown or damage due to excessive voltage. This parameter is essential for designing reliable and effective electronic systems.

    95 V
  • Energy Absorbing Capacity-Max

    Energy Absorbing Capacity-Max is a parameter that refers to the maximum amount of energy that an electronic component can absorb or dissipate without being damaged. This parameter is crucial in determining the component's ability to withstand transient voltage spikes, power surges, or other forms of electrical stress. Components with a higher Energy Absorbing Capacity-Max rating are more resilient and can better protect the overall circuit from damage. It is typically measured in joules or watts and is an important consideration in the design and selection of electronic components for applications where protection against electrical disturbances is critical.

    7 J
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    -
0 Similar Products Remaining