

Panasonic ARD55112
Manufacturer No:
ARD55112
Tiny WHSLManufacturer:
Utmel No:
1850-ARD55112
Package:
Module, Pin Contacts
Description:
RF Coaxial Relay
Quantity:
Unit Price: $619.641578
Ext Price: $619.64
Delivery:





Payment:











In Stock : 900
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$619.641578
$619.64
10
$584.567526
$5,845.68
100
$551.478799
$55,147.88
500
$520.263017
$260,131.51
1000
$490.814167
$490,814.17
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
Module, Pin Contacts - Surface Mount
having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.
NO - Mounting Feature
a process by which the operating system makes files and directories on a storage device (such as hard drive, CD-ROM, or network share) available for users to access via the computer's file system.
PANEL MOUNT - Supplier Device Package
The parameter "Supplier Device Package" in electronic components refers to the physical packaging or housing of the component as provided by the supplier. It specifies the form factor, dimensions, and layout of the component, which are crucial for compatibility and integration into electronic circuits and systems. The supplier device package information typically includes details such as the package type (e.g., DIP, SOP, QFN), number of pins, pitch, and overall size, allowing engineers and designers to select the appropriate component for their specific application requirements. Understanding the supplier device package is essential for proper component selection, placement, and soldering during the manufacturing process to ensure optimal performance and reliability of the electronic system.
Module - PackageBulk
- Base Product Number
"Base Product Number" (BPN) refers to the fundamental identifier assigned to a component by the manufacturer. This number is used to identify a specific product family or series of components that share common features, characteristics, or functionality. The BPN is usually part of a larger part number or order code that includes additional information, such as variations in packaging, tolerance, voltage ratings, and other specifications.
ARD551 - MfrPanasonic Electric Works
- Product StatusActive
- Package DescriptionROHS COMPLIANT
- Operating Temperature-Min-55 °C
- Isolation-Max55 dB
- Operating Temperature-Max85 °C
- Rohs CodeYes
- Operating Frequency (Max)26500 MHz
- Manufacturer Part NumberARD55112
- Insertion Loss-Max0.8 dB
- ManufacturerPanasonic Electronic Components
- Part Life Cycle CodeActive
- Input Power-Max120 W
- Ihs ManufacturerPANASONIC CORP
- ElectricalLife5000000 Cycle(s)
- Risk Rank5.72
- Manufacturer SeriesARD
- Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-55°C ~ 85°C - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
- - Pbfree Code
The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.
Yes - ECCN Code
An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.
EAR99 - HTS Code
HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.
8536.41.00.20 - Packing Method
The packing method in electronic components refers to the technique used to package and protect the component during shipping and handling. It encompasses various forms including tape and reel, tray, tube, or bulk packaging, each suited for different types of components and manufacturing processes. The choice of packing method can affect the ease of handling, storage, and the efficiency of assembly in automated processes. Additionally, it plays a crucial role in ensuring the reliability and integrity of the components until they are used in electronic devices.
BOX; BULK - Voltage - Supply
Voltage - Supply refers to the range of voltage levels that an electronic component or circuit is designed to operate with. It indicates the minimum and maximum supply voltage that can be applied for the device to function properly. Providing supply voltages outside this range can lead to malfunction, damage, or reduced performance. This parameter is critical for ensuring compatibility between different components in a circuit.
12V - Reach Compliance Code
Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.
compliant - Body Length or Diameter
Body length or diameter in electronic components refers to the physical dimensions of a component's housing, typically measured in millimeters or inches. It indicates the size of the component that affects its fit within a circuit board or system. This parameter is crucial for ensuring compatibility with the design and mounting of electronic devices. It can impact heat dissipation, electrical performance, and overall assembly efficiency. Accurate measurement of body length or diameter is essential for proper component selection and placement in electronic applications.
34 mm - Body Breadth
Body breadth in electronic components refers to the width of the physical body of a component, such as a resistor, capacitor, or integrated circuit. This measurement is crucial for ensuring proper fit within a circuit board or enclosure. It can affect the component's thermal performance, mechanical stability, and overall compatibility with other components in a design. Body breadth is typically specified in millimeters or inches and is an important factor in the selection and design of electronic assemblies.
13.2 mm - Physical Dimension
The parameter "Physical Dimension" in electronic components refers to the measurable size and shape characteristics of a component. This includes dimensions such as length, width, height, and diameter, which are critical for ensuring proper fit and integration into electronic circuits and systems. Physical dimensions also influence the component's performance, thermal management, and overall reliability in application environments. Understanding these dimensions is essential for designers to maintain compatibility with circuit boards and reduce issues related to space constraints.
34mm x 13.2mm x 39mm - Circuit
The parameter "Circuit" in electronic components refers to the interconnected arrangement of various electronic elements such as resistors, capacitors, inductors, and active devices like transistors. It defines the path through which electric current flows and establishes the operational behavior of the components within that system. Circuits can be classified as analog or digital, depending on the type of signals they handle, and can vary in complexity from simple series or parallel configurations to intricate designs used in advanced applications.
SPDT - Contact Current(DC)-Max
Contact Current (DC) - Max is a parameter in electronic components that specifies the maximum amount of direct current (DC) that can safely flow through the contact or connection point without causing damage or failure. This parameter is crucial for ensuring the reliability and longevity of the component, as exceeding the maximum contact current rating can lead to overheating, arcing, or even permanent damage. Designers and engineers must carefully consider this specification when selecting components for a circuit to prevent potential issues and ensure proper functionality. It is important to adhere to the manufacturer's guidelines and specifications to avoid any potential risks associated with exceeding the maximum contact current rating.
0.1 A - Contact Voltage(DC)-Max
Contact Voltage(DC)-Max refers to the maximum allowable direct current voltage that can be applied across the contacts of an electronic component without causing permanent damage or failure. It indicates the threshold above which electrical breakdown may occur, potentially harming the component's functionality. This parameter is crucial for ensuring the reliability and safety of components in various applications, as exceeding this value can lead to insulation breakdown or overheating.
30 V - Termination Type
Termination Type in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It specifies how the component's leads or terminals are designed for soldering or mounting onto a PCB. Common termination types include through-hole, surface mount, and wire lead terminations. The termination type is an important consideration when selecting components for a circuit design, as it determines how the component will be physically connected within the circuit. Different termination types offer varying levels of durability, ease of assembly, and suitability for specific applications.
SOLDER - Impedance
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.
50Ohm - Topology
In the context of electronic components, "topology" refers to the arrangement or configuration of the components within a circuit or system. It defines how the components are connected to each other and how signals flow between them. The choice of topology can significantly impact the performance, efficiency, and functionality of the electronic system. Common topologies include series, parallel, star, mesh, and hybrid configurations, each with its own advantages and limitations. Designers carefully select the appropriate topology based on the specific requirements of the circuit to achieve the desired performance and functionality.
Reflective - Relay Type
In electronic components, the parameter "Relay Type" refers to the specific classification or categorization of a relay based on its design, functionality, and application. Relays are electromechanical devices that are used to control the switching of circuits by opening or closing contacts in response to an electrical signal. The relay type typically indicates the specific characteristics of the relay, such as its switching mechanism (e.g., electromagnetic, solid-state), contact configuration (e.g., SPST, DPDT), operating voltage, current rating, and intended use (e.g., power relays, signal relays, automotive relays). Understanding the relay type is important for selecting the right relay for a particular application to ensure proper functionality and reliability.
RF COAXIAL RELAY - Contact Current(AC)-Max
Contact Current (AC) - Max is a parameter used to specify the maximum alternating current that can safely flow through the contacts of an electronic component, such as a relay or a switch. This parameter is crucial for ensuring the proper functioning and longevity of the component, as exceeding the maximum contact current can lead to overheating, arcing, and potential damage to the contacts. Manufacturers provide this specification to help users determine the compatibility of the component with their specific application requirements. It is important to adhere to the specified maximum contact current to prevent malfunctions and ensure the reliability of the electronic system.
0.1 A - Contact (AC) Max Rating R Load
The parameter "Contact (AC) Max Rating R Load" in electronic components refers to the maximum alternating current (AC) rating that the contact can handle when connected to a resistive load. This specification is important for determining the maximum current that can safely flow through the contact without causing damage or failure. It is typically expressed in amperes (A) and helps ensure that the component can reliably handle the electrical load it is designed for. Manufacturers provide this rating to help users select the appropriate component for their specific application to prevent overheating, arcing, or other potential issues related to excessive current flow.
- Operate Time
The time interval between the instant of the occurrence of a specified input condition to a system and the instant of completion of a specified operation.
15 ms - Contact (DC) Max Rating R Load
Contact (DC) Max Rating R Load refers to the maximum direct current (DC) load that an electronic component, typically a relay or switch, can handle without risk of damage or failure. This rating indicates the highest permissible current that can pass through the contacts while maintaining reliable operation. It is crucial for ensuring the safety and longevity of the component in circuit applications that involve direct current. Exceeding this rating can lead to overheating, arc formation, or contact welding.
- Contact Voltage(AC)-Max
Contact Voltage(AC)-Max refers to the maximum alternating current voltage that an electronic component can safely handle at its contact points. This parameter is critical for ensuring the safe and effective operation of devices in AC circuits. Exceeding this voltage can lead to failure or damage of the component, making it essential for designers to adhere to specified voltage ratings.
30 V - Contact/Output Supply Type
Contact/Output Supply Type is a parameter used to describe the type of connection or output supply required for an electronic component to function properly. This parameter specifies the specific type of contact or supply needed for the component to receive power or transmit signals. It can include details such as the number of pins, voltage levels, current requirements, and communication protocols. Understanding the Contact/Output Supply Type is crucial for selecting compatible components and ensuring proper functionality within an electronic system.
AC/DC - Relay Action
Relay action refers to the type of mechanical movement performed by a relay in response to an electrical signal. It typically describes how the relay transitions between its open and closed states to either allow or interrupt the flow of current in a circuit. Relay action can be classified as normally open or normally closed, indicating the default state of the relay contacts before any current is applied. The speed and responsiveness of this action can significantly affect the performance of the overall circuit in which the relay is used.
LATCHED - Operating Frequency-Min
Operating Frequency-Min is a parameter in electronic components that specifies the minimum frequency at which the component can function reliably. This parameter is crucial for determining the performance and compatibility of the component within a given system or circuit. It indicates the lowest frequency at which the component can operate without experiencing issues such as signal degradation, timing errors, or malfunctions. Designers and engineers use this specification to ensure that the component will meet the required performance criteria under specific operating conditions.
18000 MHz - VSWR
VSWR stands for Voltage Standing Wave Ratio, and it is a measure of how efficiently radio frequency (RF) power is transmitted from a source, such as a transmitter, to a load, such as an antenna, through a transmission line. It is a dimensionless ratio that compares the maximum voltage in a standing wave pattern to the minimum voltage in that pattern along the transmission line. A VSWR value of 1 indicates perfect impedance matching, meaning all the power is being efficiently transferred without any reflections. Higher VSWR values indicate a mismatch in impedance, which can lead to power loss, signal degradation, and potential damage to components. VSWR is an important parameter in RF systems to ensure optimal performance and signal integrity.
1.7 - RF Type
The rate of oscillation of electromagnetic radio waves in the range of 3 kHz to 3 GHz, as well as the alternating currents carrying the radio signals.
General Purpose - Characteristic Impedance
Characteristic impedance is a fundamental property of transmission lines and refers to the specific impedance that a transmission line presents to an electrical wave propagating along it. It is determined by the physical parameters of the transmission line, including its inductance and capacitance per unit length. When the line is terminated with a load that matches its characteristic impedance, maximum power transfer occurs, minimizing reflections and signal losses. In high-frequency applications, maintaining the characteristic impedance is crucial for signal integrity and performance.
50 Ω - P1dB
P1dB, or the 1-dB compression point, is a key parameter in electronic components, particularly in amplifiers and RF (radio frequency) devices. It indicates the output power level at which the gain of the device starts to decrease by 1 dB relative to the expected linear gain. At this point, the device is nearing saturation, and its ability to linearly amplify signals diminishes. Understanding P1dB is essential for designers to ensure that devices operate effectively within their linear region under typical operating conditions.
- - Relay Function
In electronic components, the term "Relay Function" refers to the capability of a relay to control the flow of electrical current between two or more circuits. Relays are electromechanical devices that use an electromagnet to mechanically switch electrical contacts, allowing them to open or close a circuit. The relay function is essential for applications where there is a need to isolate or control the flow of electrical signals, such as in automation systems, power distribution, and telecommunications. By activating or deactivating the relay, users can control the operation of connected devices or systems, making relays a versatile component in various electronic and electrical applications.
SPDT - Coil Voltage(DC)-Max
Coil Voltage(DC)-Max refers to the maximum direct current voltage that can be applied to the coil of an electromagnetic component, such as a relay or solenoid. This parameter is critical to ensure the safe and reliable operation of the component, as exceeding this voltage can cause overheating, insulation breakdown, or damage to the coil. It is important for designers to consider this value when integrating such components into electronic circuits to prevent failure and ensure proper functionality. Proper adherence to the Coil Voltage(DC)-Max specification helps maintain the longevity and performance of the device.
12 V - IIP3
IIP3 stands for Third-Order Intercept Point and is a measure used in the performance evaluation of linear electronic components, particularly in amplifiers and mixers. It indicates the level at which the third-order intermodulation products, generated by two input signals, will intersect the fundamental output signals in a power vs. power plot. A higher IIP3 value signifies better linearity and reduced distortion, making the device more suitable for applications where signal integrity is critical. IIP3 is an important parameter in designing communication systems to ensure that unwanted interferences do not affect the desired signals.
- - Switching Time
Switching time in electronic components refers to the time it takes for a device to change its state from one condition to another. It is a crucial parameter in determining the speed and efficiency of electronic circuits. The switching time is typically measured as the time taken for a signal to transition between specified voltage levels, such as from high to low or vice versa. Faster switching times indicate a more responsive and high-performance component, while slower switching times can lead to delays and inefficiencies in the circuit operation. Overall, understanding and optimizing the switching time of electronic components is essential for designing reliable and efficient electronic systems.
15 ms - Features
In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.
- - Body Height
In electronic components, "Body Height" refers to the vertical dimension of the component's physical body or package. It is the measurement from the bottom of the component to the top, excluding any leads or terminals. Body Height is an important parameter to consider when designing circuit boards or enclosures to ensure proper fit and clearance. It is typically specified in datasheets or technical drawings provided by the component manufacturer. Understanding the Body Height of electronic components is crucial for proper placement and integration within a circuit or system.
39 mm
ESE-31R11T
Panasonic Electronic ComponentsESE-22MV21T
Panasonic Electronic ComponentsESE-18L62B
PanasonicAVT38243
PanasonicESE-24CMV6T
PanasonicESE-16J001
Panasonic Electronic ComponentsESE-13V01D
Panasonic Electronic ComponentsESE-22MH24
Panasonic Electronic ComponentsESE-18R61B
Panasonic Electronic ComponentsAV32423
Panasonic