Sensata Technologies DBR71205-HR
Sensata Technologies DBR71205-HR
feed

Sensata Technologies DBR71205-HR

Manufacturer No:

DBR71205-HR

Utmel No:

2172-DBR71205-HR

Package:

1206 (3216 Metric)

ECAD Model:

Description:

RELAY REED 5KV 12V SPST-NC

Quantity:

Unit Price: $39.725144

Ext Price: $39.73

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 370

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $39.725144

    $39.73

  • 10

    $37.476551

    $374.77

  • 100

    $35.355237

    $3,535.52

  • 500

    $33.353997

    $16,677.00

  • 1000

    $31.466035

    $31,466.04

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
DBR71205-HR information

Specifications
Sensata Technologies DBR71205-HR technical specifications, attributes, parameters and parts with similar specifications to Sensata Technologies DBR71205-HR.
  • Type
    Parameter
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount, MLCC
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    1206 (3216 Metric)
  • Package
    Tape & Reel (TR)
  • Mfr
    Vishay Vitramon
  • Product Status
    Obsolete
  • Voltage Rated

    RATED voltage is the voltage on the nameplate - the "design point" for maximum power throughput and safe thermal operation.

    50V
  • Base Product Number

    "Base Product Number" (BPN) refers to the fundamental identifier assigned to a component by the manufacturer. This number is used to identify a specific product family or series of components that share common features, characteristics, or functionality. The BPN is usually part of a larger part number or order code that includes additional information, such as variations in packaging, tolerance, voltage ratings, and other specifications.

    DBR71205
  • Contact Materials
    Rhodium (Rh)
  • CoilResistance
    240 Ohms
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -55°C ~ 150°C
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    GA
  • Size / Dimension

    In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.

    0.126 L x 0.063 W (3.20mm x 1.60mm)
  • Tolerance

    In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.

    ±0.1pF
  • Temperature Coefficient

    The resistance-change factor per degree Celsius of temperature change is called the temperature coefficient of resistance. This factor is represented by the Greek lower-case letter “alpha” (α). A positive coefficient for a material means that its resistance increases with an increase in temperature.

    C0G, NP0
  • Applications

    The parameter "Applications" in electronic components refers to the specific uses or functions for which a component is designed. It encompasses various fields such as consumer electronics, industrial automation, telecommunications, automotive, and medical devices. Understanding the applications helps in selecting the right components for a particular design based on performance, reliability, and compatibility requirements. This parameter also guides manufacturers in targeting their products to relevant markets and customer needs.

    Automotive
  • Capacitance

    Capacitance is a fundamental electrical property of electronic components that describes their ability to store electrical energy in the form of an electric field. It is measured in farads (F) and represents the ratio of the amount of electric charge stored on a component to the voltage across it. Capacitors are passive components that exhibit capacitance and are commonly used in electronic circuits for various purposes such as filtering, energy storage, timing, and coupling. Capacitance plays a crucial role in determining the behavior and performance of electronic systems by influencing factors like signal propagation, frequency response, and power consumption.

    1 pF
  • Termination Style

    "Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.

    PC Pin
  • Failure Rate

    the frequency with which an engineered system or component fails, expressed in failures per unit of time. It is usually denoted by the Greek letter λ (lambda) and is often used in reliability engineering.

    -
  • Lead Spacing

    the distance between two baselines of lines of type. The word 'leading' originates from the strips of lead hand-typesetters used to use to space out lines of text evenly. The word leading has stuck, but essentially it's a typographer's term for line spacing.

    -
  • Lead Style

    Lead Style in electronic components refers to the configuration and arrangement of leads or terminals that connect the component to a circuit. This parameter affects the component's mounting method, compatibility with PCB layouts, and overall physical dimensions. Common lead styles include through-hole, surface-mount, and post styles, each suited for different applications and manufacturing processes. Lead style is crucial for ensuring proper electrical connections and mechanical stability within electronic assemblies.

    -
  • Contact Form

    A page on a website that allows users to communicate with the site owner. The page has fields for filling in name, address and type of comment. On most company websites, email and mailing addresses are also included; however, the contact form provides an immediate, convenient way for users to ask the company questions.

    SPST-NC (1 Form B)
  • Operate Time

    The time interval between the instant of the occurrence of a specified input condition to a system and the instant of completion of a specified operation.

    2 ms
  • Coil Voltage

    Coil voltage refers to the electrical potential difference that is applied across the coil of an electromechanical device, such as a relay or a solenoid. This voltage is essential for energizing the coil, creating a magnetic field that enables the device to perform its intended function, such as opening or closing contacts. The coil voltage is specified by the manufacturer and varies depending on the design and application of the component, commonly available in standard values like 5V, 12V, 24V, and others. Proper selection of coil voltage is crucial for optimal performance and longevity of the device.

    12VDC
  • Coil Type

    There are 2 different types of 'coil'; one has copper on it (IUD) and the other contains hormone (Mirena IUS). Both are over 99% effective at protecting against pregnancy.

    Non Latching
  • Switching Voltage

    The maximum switching voltage of a relay is the maximum voltage that can be across the contacts whether the relay is open or closed. Operating a relay with high voltages present can cause arcing, and this in turn erodes the contacts and eventually degrades contact performance.

    1000VAC, 1000VDC - Max
  • Coil Current

    A current coil is basically a coil, such as, a wire wrapped around an electrical conductor.

    50 mA
  • Release Time

    In telecommunication, release time is the time interval for a circuit to respond when an enabling signal is discontinued

    3 ms
  • Must Operate Voltage

    Must Operate Voltage is the minimum voltage level at which an electronic component or device is guaranteed to function correctly. Below this threshold, the component may experience performance issues, erratic behavior, or complete failure to operate. It is a critical specification for ensuring reliable operation in various applications where voltage variations can occur.

    9 VDC
  • Contact Rating (Current)

    Contact Rating (Current) is a parameter used to specify the maximum current that an electronic component's contact can handle without causing damage or failure. It is typically expressed in amperes (A) and is crucial for ensuring the safe and reliable operation of the component within a circuit. Exceeding the specified contact rating can lead to overheating, arcing, or even permanent damage to the component. Therefore, it is important to carefully consider the contact rating when designing or selecting components for a circuit to prevent potential hazards and ensure optimal performance.

    3 A
  • Must Release Voltage

    Must Release Voltage is the minimum voltage level that an electronic component, such as a relay or circuit breaker, requires to safely disengage or reset its mechanical operation. This parameter ensures that the component can reliably return to a non-energized state when power is removed or when a control signal goes low. It is an important specification for ensuring proper operation and safety in electronic circuits where the component may be exposed to fluctuating voltages.

    1.25 VDC
  • Seal Rating

    Seal Rating in electronic components refers to the level of protection the component has against environmental factors such as dust, moisture, and other contaminants. It is a measure of how well the component is sealed to prevent these external elements from entering and potentially damaging the internal circuitry. The seal rating is typically represented by an IP (Ingress Protection) code, which consists of two digits. The first digit indicates the level of protection against solid particles, while the second digit indicates the level of protection against liquids. A higher seal rating indicates a greater level of protection against environmental factors.

    -
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    Epoxy Mountable, High Temperature
  • Height Seated (Max)

    Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.

    -
  • Thickness (Max)

    Thickness (Max) is a parameter in electronic components that refers to the maximum allowable thickness of the component. This measurement is important for ensuring proper fit and compatibility within a circuit or device. It is typically specified in the component's datasheet and is crucial for mechanical design considerations, such as determining clearance requirements and ensuring that the component can be properly mounted or soldered onto a PCB. Exceeding the maximum thickness limit can lead to issues such as interference with neighboring components, improper assembly, or mechanical stress that may affect the component's performance or reliability.

    0.067 (1.70mm)
  • Ratings

    The parameter "Ratings" in electronic components refers to the specified limits that define the maximum operational capabilities of a component. These ratings include voltage, current, power, temperature, and frequency, determining the conditions under which the component can function safely and effectively. Exceeding these ratings can lead to failure, damage, or unsafe operation, making it crucial for designers to adhere to them during component selection and usage.

    AEC-Q200
0 Similar Products Remaining
DBR71205-HR Relevant information

Hot Sale
Related Categories
Similar Products
Popular Search
Related Products
Same Manufacturer Products
The following parts include "DBR71205-HR" in Sensata Technologies DBR71205-HR.
  • Part Number
  • Manufacturer
  • Package
  • Description