Siemens 3RW50736AB15
Siemens 3RW50736AB15
feed

Siemens 3RW50736AB15

Manufacturer No:

3RW50736AB15

Manufacturer:

Siemens

Utmel No:

2239-3RW50736AB15

Package:

-

ECAD Model:

Description:

3RW50 600V 250A 110-250V SCREW A

Quantity:

Unit Price: $5,455.724020

Ext Price: $5,455.72

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 944

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $5,455.724020

    $5,455.72

  • 10

    $5,276.328839

    $52,763.29

  • 25

    $5,239.651280

    $130,991.28

  • 50

    $5,203.228680

    $260,161.43

  • 100

    $5,096.208305

    $509,620.83

  • 500

    $4,731.855437

    $2,365,927.72

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
3RW50736AB15 information

Specifications
Siemens 3RW50736AB15 technical specifications, attributes, parameters and parts with similar specifications to Siemens 3RW50736AB15.
  • Type
    Parameter
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Chassis Mount
  • Weight
    -
  • Mfr
    Siemens
  • Package
    Box
  • Product Status
    Active
  • For Use With/Related Products
    -
  • Voltage, Rating
    400 → 600 V
  • Rated control supply voltage at AC 50 Hz
    110 - 250
  • Rated control supply voltage at AC 60 Hz
    110 - 250
  • Rated operating voltage Ue
    200 - 600
  • Degree of protection (IP)
    IP00
  • Voltage type for actuating
    AC
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    SIRIUS
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -25°C ~ 60°C
  • Type
    Module
  • Power Rating

    The "Power Rating" of an electronic component refers to the maximum amount of power that the component can handle or dissipate without being damaged. It is typically measured in watts and is an important specification to consider when designing or selecting components for a circuit. Exceeding the power rating of a component can lead to overheating, malfunction, or even permanent damage. It is crucial to ensure that the power rating of each component in a circuit is sufficient to handle the power levels expected during normal operation to maintain the reliability and longevity of the electronic system.

    160 kW
  • Voltage - Supply

    Voltage - Supply refers to the range of voltage levels that an electronic component or circuit is designed to operate with. It indicates the minimum and maximum supply voltage that can be applied for the device to function properly. Providing supply voltages outside this range can lead to malfunction, damage, or reduced performance. This parameter is critical for ensuring compatibility between different components in a circuit.

    110 ~ 250VAC
  • Current Rating

    Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.

    250 A
  • Function

    The parameter "Function" in electronic components refers to the specific role or purpose that the component serves within an electronic circuit. It defines how the component interacts with other elements, influences the flow of electrical signals, and contributes to the overall behavior of the system. Functions can include amplification, signal processing, switching, filtering, and energy storage, among others. Understanding the function of each component is essential for designing effective and efficient electronic systems.

    Single direction
  • Interface

    In electronic components, the term "Interface" refers to the point at which two different systems, devices, or components connect and interact with each other. It can involve physical connections such as ports, connectors, or cables, as well as communication protocols and standards that facilitate the exchange of data or signals between the connected entities. The interface serves as a bridge that enables seamless communication and interoperability between different parts of a system or between different systems altogether. Designing a reliable and efficient interface is crucial in ensuring proper functionality and performance of electronic components and systems.

    -
  • Current - Output

    Current - Output is a parameter in electronic components that refers to the maximum amount of current that can be delivered by the output of the component. It is a crucial specification as it determines the capability of the component to supply power to connected devices or circuits. The current output rating is typically specified in amperes (A) and is important for ensuring that the component can safely and effectively power the load it is connected to without overheating or failing. Designers and engineers must consider the current output rating when selecting components to ensure compatibility and reliable operation of the overall system.

    250A
  • Voltage - Load

    Voltage - Load refers to the voltage across a load component in an electronic circuit when it is connected and operational. It represents the electrical potential difference that drives current through the load, which can be a resistor, motor, or other devices that consume electrical power. The voltage - load relationship is crucial for determining how much power the load will utilize and how it will affect the overall circuit performance. Properly managing voltage - load is essential for ensuring devices operate efficiently and safely within their specified limits.

    600V
  • Motor Type

    Motor Type in electronic components refers to the classification or categorization of motors based on their design, construction, and operating characteristics. This parameter helps in identifying the specific type of motor being used in a particular electronic device or system. Common motor types include DC motors, AC motors, stepper motors, servo motors, and brushless motors, each with its own unique features and applications. Understanding the motor type is crucial for selecting the right motor for a given application, as different types of motors have different performance characteristics, efficiency levels, and control requirements. It is important to consider the motor type when designing or troubleshooting electronic systems to ensure optimal performance and reliability.

    AC Motor
  • Control / Drive Type

    The parameter "Control / Drive Type" in electronic components refers to the method or mechanism used to control or drive the component. It specifies how the component is activated, manipulated, or operated within a circuit or system. This parameter can include details such as the type of input signal required, the voltage levels needed for operation, the control interface used (analog or digital), and any specific control protocols or standards that must be followed. Understanding the control or drive type of electronic components is crucial for proper integration and operation within a larger electronic system.

    Soft Start / Stop
  • Number of Motors
    1
  • Wattage - Load

    Wattage - Load is a parameter that refers to the amount of power a device or electronic component can handle or consume. It is typically measured in watts and indicates the maximum power capacity that the component can safely handle without overheating or malfunctioning. Understanding the wattage-load relationship is crucial for ensuring that the component is used within its specified limits to prevent damage or failure. It is important to match the wattage of the load with the wattage capacity of the component to maintain optimal performance and safety.

    160000 W
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    -
  • Phase

    Phase in electronic components refers to the position of a waveform relative to a reference point in time, often measured in degrees. It indicates the timing relationship between two or more signals, such as voltage and current in an AC circuit. Phase differences can impact the behavior of circuits, affecting power transfer and resonance in reactive components. Understanding phase is essential for designing and analyzing circuits, especially in communications, signal processing, and power electronics.

    3
  • IP Rating

    IP (or "Ingress Protection") ratings are defined in international standard EN 6529 (British BS EN 6529:1992, European IEC 659:1989). They are?used to define levels of sealing effectiveness of electrical enclosures against intrusion from foreign bodies?(tools, dirt etc) and moisture.

    IP00
0 Similar Products Remaining
3RW50736AB15 Relevant information