

Silicon Labs 552AF000177DG
Manufacturer No:
552AF000177DG
Tiny WHSLManufacturer:
Utmel No:
2258-552AF000177DG
Package:
6-SMD, No Lead
Datasheet:
Description:
Controlled Oscillator 644.53125MHz/657.42188MHz VCXO LVPECL 6-Pin SMD Tray
Quantity:
Unit Price: $76.798694
Ext Price: $76.80
Delivery:





Payment:











In Stock : 14
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$76.798694
$76.80
10
$72.451598
$724.52
100
$68.350564
$6,835.06
500
$64.481664
$32,240.83
1000
$60.831759
$60,831.76
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Factory Lead Time6 Weeks
- Contact Plating
Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.
Gold - Mount
In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.
Surface Mount - Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
6-SMD, No Lead - Operating Frequency (Max)945MHz
- Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-40°C~85°C - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Tray - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
Si552 - Published2004
- Size / Dimension
In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.
0.276Lx0.197W 7.00mmx5.00mm - Pbfree Code
The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.
yes - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
1 (Unlimited) - Number of Terminations6
- TypeVCXO
- Supply Voltage
Supply voltage refers to the electrical potential difference provided to an electronic component or circuit. It is crucial for the proper operation of devices, as it powers their functions and determines performance characteristics. The supply voltage must be within specified limits to ensure reliability and prevent damage to components. Different electronic devices have specific supply voltage requirements, which can vary widely depending on their design and intended application.
3.3V - Frequency Stability
the variation of output frequency of a crystal oscillator due to external conditions like temperature variation, voltage variation, output load variation, and frequency aging.
±50ppm - Output
In electronic components, the parameter "Output" typically refers to the signal or data that is produced by the component and sent to another part of the circuit or system. The output can be in the form of voltage, current, frequency, or any other measurable quantity depending on the specific component. The output of a component is often crucial in determining its functionality and how it interacts with other components in the circuit. Understanding the output characteristics of electronic components is essential for designing and troubleshooting electronic circuits effectively.
LVPECL - Function
The parameter "Function" in electronic components refers to the specific role or purpose that the component serves within an electronic circuit. It defines how the component interacts with other elements, influences the flow of electrical signals, and contributes to the overall behavior of the system. Functions can include amplification, signal processing, switching, filtering, and energy storage, among others. Understanding the function of each component is essential for designing effective and efficient electronic systems.
Enable/Disable - Base Resonator
Base resonator is a component used in electronic circuits to establish a specific resonant frequency. It typically consists of a combination of inductors and capacitors that create a resonant LC circuit. The primary function of a base resonator is to filter signals, allowing certain frequencies to pass while attenuating others. This makes it essential in applications like radio transmitters and receivers where precise frequency selection is critical.
Crystal - Current - Supply (Max)
The parameter "Current - Supply (Max)" in electronic components refers to the maximum amount of current that a component can draw from a power supply for its operation. This parameter is critical for ensuring that the power supply can adequately meet the demands of the component without causing damage or malfunction. Exceeding this specified maximum current can lead to overheating, reduced performance, or failure of the component. It is essential to consider this value when designing or integrating components into electronic circuits to maintain reliability and functionality.
130mA - Qualification Status
An indicator of formal certification of qualifications.
Not Qualified - Physical Dimension
The parameter "Physical Dimension" in electronic components refers to the measurable size and shape characteristics of a component. This includes dimensions such as length, width, height, and diameter, which are critical for ensuring proper fit and integration into electronic circuits and systems. Physical dimensions also influence the component's performance, thermal management, and overall reliability in application environments. Understanding these dimensions is essential for designers to maintain compatibility with circuit boards and reduce issues related to space constraints.
7.0mm x 5.0mm x 1.85mm - Operating Frequency
Operating frequency is the frequency at which the communications are being made with the total bandwidth occupied by the carrier signal with modulation. Usually bandwidth of the antenna will be wider than the bandwidth of the signal so that more than one center frequency the antenna can be put in to effective use.
657.42188MHz - Operating Supply Voltage
The voltage level by which an electrical system is designated and to which certain operating characteristics of the system are related.
3.3V - Rise Time-Max
Rise Time-Max is a parameter used in electronic components to indicate the maximum time it takes for a signal to transition from a low state to a high state. It is typically measured from 10% to 90% of the output voltage swing. This parameter is crucial for assessing the speed and performance of circuits, particularly in digital signal applications where fast switching times are essential. A shorter rise time generally signifies better performance and faster response in electronic devices.
0.35ns - Fall Time-Max
Fall Time-Max is a parameter used to describe the time it takes for a signal to transition from a high level to a low level in electronic components such as transistors, diodes, and integrated circuits. It is typically measured in nanoseconds or microseconds and is an important characteristic that affects the overall performance of the component. A shorter fall time indicates faster switching speeds and can be crucial in applications where high-speed signal processing is required. Designers often consider the fall time-max specification when selecting components for circuits that require precise timing and fast response times.
0.35ns - Symmetry-Max
Symmetry-Max is a parameter used in electronic components to describe the maximum level of symmetry that can be achieved within the component's design or operation. This parameter is important in ensuring that the component functions efficiently and reliably. In practical terms, Symmetry-Max refers to the degree of balance or uniformity in the component's structure or behavior, which can impact its performance and stability. Engineers and designers often consider Symmetry-Max when developing electronic components to optimize their functionality and minimize potential issues related to asymmetry.
55/45% - Supply Voltage-Max (Vsup)
The parameter "Supply Voltage-Max (Vsup)" in electronic components refers to the maximum voltage that can be safely applied to the component without causing damage. It is an important specification to consider when designing or using electronic circuits to ensure the component operates within its safe operating limits. Exceeding the maximum supply voltage can lead to overheating, component failure, or even permanent damage. It is crucial to adhere to the specified maximum supply voltage to ensure the reliable and safe operation of the electronic component.
3.63V - Current - Supply (Disable) (Max)
The parameter "Current - Supply (Disable) (Max)" refers to the maximum current that an electronic component will draw from the supply when it is in a disabled or inactive state. This parameter is critical for power management, as it helps designers understand the power consumption of the component when it is not performing its primary function. Lower values for this parameter are generally preferred in battery-powered or energy-sensitive applications to minimize power waste.
75mA - Frequency Adjustment-Mechanical
Frequency Adjustment-Mechanical refers to a parameter in electronic components that involves adjusting the frequency of an electronic signal using mechanical means. This adjustment can be achieved by physically changing the dimensions or properties of the component, such as altering the length of a resonant cavity or adjusting the tension of a mechanical element. By changing the frequency of the signal, the component can be tuned to operate at a specific frequency or to match the frequency requirements of a particular circuit or system. This parameter is commonly found in components like oscillators, filters, and resonators, where precise frequency control is necessary for proper operation.
NO - Linearity
In electronic components, linearity refers to the relationship between the input and output signals of the component. A component is said to be linear if its output is directly proportional to its input over a specified range. In other words, when the input signal changes, the output signal changes in a consistent and predictable manner without introducing distortion or non-linear effects.Linearity is an important parameter in electronic components such as amplifiers, filters, and sensors, as it determines the accuracy and fidelity of signal processing. Non-linearities in components can lead to signal distortion, harmonic generation, and other undesirable effects that can degrade the performance of electronic systems.Engineers often characterize the linearity of components by measuring parameters such as gain error, harmonic distortion, and intermodulation distortion. By ensuring that components exhibit good linearity characteristics, designers can create electronic systems that accurately process signals and faithfully reproduce the desired output.
10% - Frequency Deviation/Pullability
Frequency Deviation, also known as Pullability, refers to the ability of an oscillator or a resonant circuit to change its output frequency in response to external influences such as temperature, voltage, or load variations. It measures how much the frequency can shift from its nominal value when subjected to these effects. This parameter is crucial in applications where precise frequency stability is required, as excessive frequency deviation could lead to performance degradation in communication systems or signal integrity issues in electronic devices.
100 ppm - Operating Frequency-Min
Operating Frequency-Min is a parameter in electronic components that specifies the minimum frequency at which the component can function reliably. This parameter is crucial for determining the performance and compatibility of the component within a given system or circuit. It indicates the lowest frequency at which the component can operate without experiencing issues such as signal degradation, timing errors, or malfunctions. Designers and engineers use this specification to ensure that the component will meet the required performance criteria under specific operating conditions.
10MHz - Frequency - Output 1
The parameter "Frequency - Output 1" in electronic components refers to the maximum frequency at which the output signal of the component can operate effectively. It indicates the highest frequency at which the component can accurately process and transmit signals without distortion or loss of information. This parameter is crucial in applications where high-frequency signals need to be processed, such as in communication systems, data transmission, and signal processing. Designers and engineers need to consider this parameter when selecting components to ensure that the desired frequency range is supported for optimal performance.
644.53125MHz - Frequency - Output 2
Frequency - Output 2 is a parameter in electronic components that refers to the frequency at which the output signal of the component operates or is generated. This parameter is important in determining the performance and functionality of the component in various applications. The frequency of Output 2 can impact the overall operation and efficiency of the component, making it a crucial specification to consider when designing or selecting electronic components for a specific project or system. It is typically measured in hertz (Hz) or kilohertz (kHz) and plays a significant role in determining the compatibility and integration of the component within a larger electronic system.
657.42188MHz - Height0.071 1.80mm
- RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
RoHS Compliant