

SiTIME SIT5001AI-GE-18N0-14.745600Y
In Stock : 17
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$5.304682
$5.30
10
$5.004417
$50.04
100
$4.721148
$472.11
500
$4.453913
$2,226.96
1000
$4.201805
$4,201.80
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Factory Lead Time8 Weeks
- Mount
In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.
Surface Mount - Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Surface Mount - Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
4-SMD, No Lead - Operating Temperature (Max.)85°C
- Operating Temperature (Min.)-40°C
- Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Tape & Reel (TR) - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
SiT5001 - Size / Dimension
In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.
0.106Lx0.094W 2.70mmx2.40mm - JESD-609 Code
The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.
e4 - Pbfree Code
The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.
yes - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
1 (Unlimited) - TypeTCXO
- Terminal Finish
Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.
Nickel/Palladium/Gold (Ni/Pd/Au) - Additional Feature
Any Feature, including a modified Existing Feature, that is not an Existing Feature.
TR; ALSO COMPATIBLE WITH 2.5X2 MM FOOTPRINT - Supply Voltage
Supply voltage refers to the electrical potential difference provided to an electronic component or circuit. It is crucial for the proper operation of devices, as it powers their functions and determines performance characteristics. The supply voltage must be within specified limits to ensure reliability and prevent damage to components. Different electronic devices have specific supply voltage requirements, which can vary widely depending on their design and intended application.
1.8V - Frequency Stability
the variation of output frequency of a crystal oscillator due to external conditions like temperature variation, voltage variation, output load variation, and frequency aging.
5% - Base Resonator
Base resonator is a component used in electronic circuits to establish a specific resonant frequency. It typically consists of a combination of inductors and capacitors that create a resonant LC circuit. The primary function of a base resonator is to filter signals, allowing certain frequencies to pass while attenuating others. This makes it essential in applications like radio transmitters and receivers where precise frequency selection is critical.
MEMS - Physical Dimension
The parameter "Physical Dimension" in electronic components refers to the measurable size and shape characteristics of a component. This includes dimensions such as length, width, height, and diameter, which are critical for ensuring proper fit and integration into electronic circuits and systems. Physical dimensions also influence the component's performance, thermal management, and overall reliability in application environments. Understanding these dimensions is essential for designers to maintain compatibility with circuit boards and reduce issues related to space constraints.
2.7mm x 2.4mm x 0.75mm - Operating Frequency
Operating frequency is the frequency at which the communications are being made with the total bandwidth occupied by the carrier signal with modulation. Usually bandwidth of the antenna will be wider than the bandwidth of the signal so that more than one center frequency the antenna can be put in to effective use.
14.7456MHz - Rise Time-Max
Rise Time-Max is a parameter used in electronic components to indicate the maximum time it takes for a signal to transition from a low state to a high state. It is typically measured from 10% to 90% of the output voltage swing. This parameter is crucial for assessing the speed and performance of circuits, particularly in digital signal applications where fast switching times are essential. A shorter rise time generally signifies better performance and faster response in electronic devices.
2ns - Fall Time-Max
Fall Time-Max is a parameter used to describe the time it takes for a signal to transition from a high level to a low level in electronic components such as transistors, diodes, and integrated circuits. It is typically measured in nanoseconds or microseconds and is an important characteristic that affects the overall performance of the component. A shorter fall time indicates faster switching speeds and can be crucial in applications where high-speed signal processing is required. Designers often consider the fall time-max specification when selecting components for circuits that require precise timing and fast response times.
2ns - Symmetry-Max
Symmetry-Max is a parameter used in electronic components to describe the maximum level of symmetry that can be achieved within the component's design or operation. This parameter is important in ensuring that the component functions efficiently and reliably. In practical terms, Symmetry-Max refers to the degree of balance or uniformity in the component's structure or behavior, which can impact its performance and stability. Engineers and designers often consider Symmetry-Max when developing electronic components to optimize their functionality and minimize potential issues related to asymmetry.
55/45% - Supply Voltage-Max (Vsup)
The parameter "Supply Voltage-Max (Vsup)" in electronic components refers to the maximum voltage that can be safely applied to the component without causing damage. It is an important specification to consider when designing or using electronic circuits to ensure the component operates within its safe operating limits. Exceeding the maximum supply voltage can lead to overheating, component failure, or even permanent damage. It is crucial to adhere to the specified maximum supply voltage to ensure the reliable and safe operation of the electronic component.
1.89V - Supply Voltage-Min (Vsup)
The parameter "Supply Voltage-Min (Vsup)" in electronic components refers to the minimum voltage level required for the component to operate within its specified performance range. This parameter indicates the lowest voltage that can be safely applied to the component without risking damage or malfunction. It is crucial to ensure that the supply voltage provided to the component meets or exceeds this minimum value to ensure proper functionality and reliability. Failure to adhere to the specified minimum supply voltage may result in erratic behavior, reduced performance, or even permanent damage to the component.
1.71V - Output Load
The parameter "Output Load" in electronic components refers to the impedance or resistance that the output of a device is designed to drive. It is a crucial specification that indicates the maximum load that the output can handle while maintaining proper performance. The output load is typically expressed in ohms and can vary depending on the type of component, such as amplifiers, sensors, or microcontrollers. It is important to match the output load of a component with the load it is driving to prevent signal distortion, power loss, or damage to the component.
15 pF - Frequency Adjustment-Mechanical
Frequency Adjustment-Mechanical refers to a parameter in electronic components that involves adjusting the frequency of an electronic signal using mechanical means. This adjustment can be achieved by physically changing the dimensions or properties of the component, such as altering the length of a resonant cavity or adjusting the tension of a mechanical element. By changing the frequency of the signal, the component can be tuned to operate at a specific frequency or to match the frequency requirements of a particular circuit or system. This parameter is commonly found in components like oscillators, filters, and resonators, where precise frequency control is necessary for proper operation.
NO - Height787.4μm
- Height Seated (Max)
Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.
0.031 0.80mm - RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
ROHS3 Compliant