

TDK Electronics Inc. B72232B0131K001
Manufacturer No:
B72232B0131K001
Tiny WHSLManufacturer:
Utmel No:
2454-B72232B0131K001
Package:
Encased Disc
Datasheet:
Description:
Varistors 130V RMS 32MM Varistor B32K130
Quantity:
Unit Price: $7.565084
Ext Price: $7.57
Delivery:





Payment:











In Stock : 43
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$7.565084
$7.57
10
$7.136872
$71.37
100
$6.732898
$673.29
500
$6.351790
$3,175.90
1000
$5.992255
$5,992.26
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Chassis Mount - Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
Encased Disc - Surface Mount
having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.
NO - Terminal Shape
Terminal Shape in electronic components refers to the physical design of the connection points on the component that allow for electrical connections to be made. These terminals can come in various shapes such as pins, leads, pads, or terminals with specific configurations like surface mount or through-hole. The terminal shape is important as it determines how the component can be mounted on a circuit board or connected to other components. Different terminal shapes are used based on the specific requirements of the electronic circuit design and manufacturing process.
BINDING POST - Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-40°C~85°C TA - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Bulk - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
HighE - Published2011
- JESD-609 Code
The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.
e3 - Pbfree Code
The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.
yes - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
1 (Unlimited) - Number of Terminations2
- ECCN Code
An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.
EAR99 - Terminal Finish
Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.
Tin (Sn) - HTS Code
HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.
8533.40.40.00 - Resistor Type
The parameter "Resistor Type" in electronic components refers to the specific material and construction of a resistor that determines its electrical properties and performance characteristics. There are various types of resistors available, such as carbon film, metal film, wirewound, and thick film resistors, each with its own advantages and applications. The resistor type affects factors like tolerance, temperature coefficient, power rating, and stability, which are important considerations when selecting a resistor for a particular circuit. Choosing the right resistor type is crucial for ensuring proper functionality and reliability of electronic devices and circuits.
VARISTOR - Number of Circuits1
- Terminal Placement
Terminal Placement in electronic components refers to the physical location of the terminals or connection points on the component where external electrical connections are made. The placement of terminals is crucial for ensuring proper connectivity and functionality of the component within a circuit. It is important to consider factors such as spacing, orientation, and accessibility of terminals to facilitate easy installation and maintenance. Proper terminal placement also helps in reducing the risk of short circuits or other electrical issues. Overall, terminal placement plays a significant role in the design and usability of electronic components.
RADIAL - Capacitance @ Frequency
Capacitance @ Frequency refers to the value of capacitance that a capacitor exhibits when subjected to an alternating current (AC) signal at a specific frequency. This parameter highlights how the capacitor's behavior changes with frequency, as capacitance can vary due to effects like equivalent series resistance (ESR) and loss factors. Typically measured in microfarads (µF) or picofarads (pF), this value is crucial for applications involving signal coupling, filtering, and timing where AC signals are prevalent. Understanding capacitance at different frequencies helps in selecting the right capacitor for specific circuit functions.
11000pF @ 1kHz - Varistor Voltage (Max)
The parameter "Varistor Voltage (Max)" refers to the maximum voltage that a varistor can withstand without breaking down. A varistor is a type of electronic component that is used to protect circuits from overvoltage conditions by rapidly changing its resistance in response to voltage fluctuations. When the voltage across a varistor exceeds its maximum rating, it will conduct current and dissipate the excess energy as heat, thereby protecting the circuit. It is important to select a varistor with a maximum voltage rating that is higher than the expected operating voltage to ensure reliable protection against overvoltage events.
225.5V - Energy
In electronic components, "Energy" refers to the amount of electrical power consumed or stored by the component during operation. It is a crucial parameter that determines the efficiency and performance of the component. Energy consumption is typically measured in units such as watt-hours (Wh) or joules (J), while energy storage is often quantified in terms of capacitance or battery capacity. Understanding the energy characteristics of electronic components is essential for designing efficient and reliable electronic systems.
210J - Varistor Voltage (Min)
Varistor Voltage (Min) is the minimum voltage at which a varistor begins to conduct significantly and clamp voltage spikes. It is a critical parameter as it indicates the threshold for the protective action of the varistor. When the voltage exceeds this level, the varistor transitions from a high-resistance state to a low-resistance state, providing a path to divert excess current. This feature helps protect electronic circuits from transient voltage surges.
184.5V - Varistor Voltage (Typ)
The parameter "Varistor Voltage (Typ)" in electronic components refers to the typical voltage at which a varistor begins to conduct significantly. A varistor is a type of voltage-dependent resistor that is commonly used to protect electronic circuits from voltage spikes and surges. When the voltage across a varistor exceeds its varistor voltage, the device starts to conduct and shunt the excess voltage to protect the circuit. The "Typ" designation indicates that the specified voltage is a typical value, and actual varistor voltages may vary slightly within a specified range. Understanding the varistor voltage is crucial for selecting the appropriate varistor for a given application to ensure effective protection against voltage transients.
205V - Maximum AC Volts
Maximum AC Volts is a parameter that specifies the maximum voltage level that an electronic component can safely handle when operating with an alternating current (AC) input. This parameter is crucial for ensuring the component's reliability and longevity, as exceeding the maximum AC voltage can lead to damage or failure. It is typically expressed in volts and is determined through testing and analysis of the component's electrical characteristics. Designers and engineers must carefully consider the maximum AC volts rating when selecting components for a circuit to prevent overloading and potential hazards.
130V - Maximum DC Volts
Maximum DC Volts is a parameter that specifies the maximum voltage that an electronic component can safely handle when operating with direct current (DC) power. This value is crucial for ensuring the component's longevity and preventing damage due to overvoltage. Exceeding the maximum DC voltage rating can lead to permanent damage or failure of the component. It is important to carefully consider this parameter when designing or selecting electronic components for a circuit to ensure proper functionality and reliability.
170V - Current - Surge
The parameter "Current - Surge" in electronic components refers to the maximum current that a component can handle for a short duration without being damaged. Surge current is typically higher than the component's rated continuous current and is often associated with transient events such as power surges or inrush currents during startup. It is important to consider the surge current rating when designing or selecting components to ensure they can withstand sudden spikes in current without failing. Exceeding the surge current rating can lead to overheating, component damage, or even system failure.
25kA - RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
ROHS3 Compliant
AVR-M1005C080MTABB
TDK CorporationAVRL101A1R1NTA
TDK CorporationAVR-M1608C080MTAAB
TDK CorporationAVR-M1005C270MTABB
TDK CorporationAVR-M1005C270MTAAB
TDK CorporationAVRM0603C080MT101N
TDK CorporationAVR-M1005C080MTADB
TDK CorporationAVR-M1005C080MTACB
TDK CorporationAVR-M1005C080MTAAB
TDK CorporationAVRL161A1R1NTA
TDK Corporation