

TE Connectivity 23ESA103MMF50NF
Manufacturer No:
23ESA103MMF50NF
Tiny WHSLManufacturer:
Utmel No:
2460-23ESA103MMF50NF
Package:
-
Description:
Rotary Potentiometer, Carbon Element, 10 kOhm, 1Turn, Linear, 400 mW, ± 20%
Quantity:
Delivery:





Payment:











In Stock : Please Inquire
Please send RFQ , we will respond immediately.
United States
China
Canada
Japan
Russia
Germany
United Kingdom
Singapore
Italy
Hong Kong(China)
Taiwan(China)
France
Korea
Mexico
Netherlands
Malaysia
Austria
Spain
Switzerland
Poland
Thailand
Vietnam
India
United Arab Emirates
Afghanistan
Åland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua & Barbuda
Argentina
Armenia
Aruba
Australia
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius and Saba
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Cayman Islands
Central African Republic
Chad
Chile
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo
Congo (DRC)
Cook Islands
Costa Rica
Côte d’Ivoire
Croatia
Cuba
Curaçao
Cyprus
Czechia
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
French Guiana
French Polynesia
Gabon
Gambia
Georgia
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao(China)
Madagascar
Malawi
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Authority
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Portugal
Puerto Rico
Qatar
Réunion
Romania
Rwanda
Samoa
San Marino
São Tomé & Príncipe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Sudan
Sri Lanka
St Helena, Ascension, Tristan da Cunha
St. Barthélemy
St. Kitts & Nevis
St. Lucia
St. Martin
St. Pierre & Miquelon
St. Vincent & Grenadines
Sudan
Suriname
Svalbard & Jan Mayen
Sweden
Syria
Tajikistan
Tanzania
Timor-Leste
Togo
Tokelau
Tonga
Trinidad & Tobago
Tunisia
Turkey
Turkmenistan
Turks & Caicos Islands
Tuvalu
U.S. Outlying Islands
U.S. Virgin Islands
Uganda
Ukraine
Uruguay
Uzbekistan
Vanuatu
Vatican City
Venezuela
Wallis & Futuna
Yemen
Zambia
Zimbabwe
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Panel Mount - Resistive Material
The resistive material is a combination of a Ceramic material and a Metal, and therefore these resistors are also referred to as Cermet. Just as with carbon film, the resistance value is adjusted by cutting a spiral pattern in the film. This can be done with an abrasive or a laser.
Carbon - Product Depth (mm)20.4(mm)
- Operating Temp Range-25C to 70C
- Switch OptionNO
- Positions of AdjustmentSIDE
- Product Diameter (mm)Not Required(mm)
- Mounting StylesPanel
- Number of Elements1
- Shaft Diameter (mm)6.35(mm)
- Tolerance (+ or -)20%
- Rad HardenedNo
- Lead Free Status / RoHS Status--
- PackageBulk
- Base Product Number
"Base Product Number" (BPN) refers to the fundamental identifier assigned to a component by the manufacturer. This number is used to identify a specific product family or series of components that share common features, characteristics, or functionality. The BPN is usually part of a larger part number or order code that includes additional information, such as variations in packaging, tolerance, voltage ratings, and other specifications.
23ESA - MfrTE Connectivity Passive Product
- Product StatusActive
- Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
23, Citec - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Bulk - Tolerance
In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.
±20% - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
-- - Temperature Coefficient
The resistance-change factor per degree Celsius of temperature change is called the temperature coefficient of resistance. This factor is represented by the Greek lower-case letter “alpha” (α). A positive coefficient for a material means that its resistance increases with an increase in temperature.
5% - TypePotentiometer
- Resistance
Resistance is a fundamental property of electronic components that measures their opposition to the flow of electric current. It is denoted by the symbol "R" and is measured in ohms (Ω). Resistance is caused by the collisions of electrons with atoms in a material, which generates heat and reduces the flow of current. Components with higher resistance will impede the flow of current more than those with lower resistance. Resistance plays a crucial role in determining the behavior and functionality of electronic circuits, such as limiting current flow, voltage division, and controlling power dissipation.
10000(ohm) - Power (Watts)
The parameter "Power (Watts)" in electronic components refers to the amount of electrical energy consumed or dissipated by the component. It is a measure of how much energy the component can handle or generate. Power is typically measured in watts, which is a unit of power that indicates the rate at which energy is transferred. Understanding the power rating of electronic components is crucial for ensuring they operate within their specified limits to prevent overheating and potential damage. It is important to consider power requirements when designing circuits or selecting components to ensure proper functionality and reliability.
0.4W - Power Rating
The "Power Rating" of an electronic component refers to the maximum amount of power that the component can handle or dissipate without being damaged. It is typically measured in watts and is an important specification to consider when designing or selecting components for a circuit. Exceeding the power rating of a component can lead to overheating, malfunction, or even permanent damage. It is crucial to ensure that the power rating of each component in a circuit is sufficient to handle the power levels expected during normal operation to maintain the reliability and longevity of the electronic system.
0.4 mW - Technology
In the context of electronic components, the parameter "Technology" refers to the specific manufacturing process and materials used to create the component. This includes the design, construction, and materials used in the production of the component. The technology used can greatly impact the performance, efficiency, and reliability of the electronic component. Different technologies may be used for different types of components, such as integrated circuits, resistors, capacitors, and more. Understanding the technology behind electronic components is important for selecting the right components for a particular application and ensuring optimal performance.
Carbon Film - Military Standard
Military Standard in electronic components refers to a set of guidelines and specifications established by the military for the design, manufacturing, and testing of electronic devices used in military applications. These standards ensure that the components meet specific requirements for reliability, durability, performance, and environmental conditions. Components that meet military standards are often more rugged and capable of withstanding harsh operating conditions such as extreme temperatures, vibrations, and electromagnetic interference. Adhering to military standards helps to ensure the quality and consistency of electronic components used in critical military systems and applications.
Not Required - Termination Style
"Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.
EYELET - Actuator Type
The actuator type in electronic components refers to the specific mechanism or technology used to convert electrical energy into physical motion or action. Common actuator types include electric motors, solenoids, piezoelectric actuators, and hydraulic or pneumatic cylinders. Each type has its unique characteristics, advantages, and applications, allowing them to be utilized in diverse systems such as robotics, automation, and control processes. The choice of actuator type often influences the performance, efficiency, and functionality of the overall system.
Flatted - Failure Rate
the frequency with which an engineered system or component fails, expressed in failures per unit of time. It is usually denoted by the Greek letter λ (lambda) and is often used in reliability engineering.
Not Required - Bushing Thread
a fastener element that is inserted into an object
3/8 - Adjustment Type
Adjustment Type refers to the method used to modify the electrical characteristics of electronic components to achieve desired performance. It can encompass various techniques such as tuning, trimming, or calibrating components like resistors, capacitors, and inductors. These adjustments are crucial for optimizing circuit functionality, enhancing accuracy, and ensuring stability in varied operating conditions. The specific adjustment type can impact the precision and reliability of electronic devices in applications ranging from consumer electronics to industrial systems.
Flatted - Number of Turns1
- Taper
In electronic components, the parameter "Taper" refers to the rate at which a variable resistor's resistance changes as the control knob is adjusted. Taper is commonly used to describe potentiometers and trimmer resistors. There are different types of tapers, such as linear taper, logarithmic taper, and audio taper, each affecting how the resistance changes in relation to the physical position of the control knob. The taper of a component is important in determining how the device responds to adjustments and can impact the overall performance and usability of the electronic circuit.
Linear - Built in Switch
The term "Built-in Switch" in electronic components refers to a feature where a switch is integrated directly into the component itself, allowing for control or manipulation of certain functions or settings. This switch is typically designed to be easily accessible and operated by the user without the need for external components. Built-in switches are commonly found in devices such as power supplies, sensors, and control modules, providing a convenient way to turn on/off or adjust specific functions. Overall, the inclusion of a built-in switch enhances the usability and functionality of the electronic component by offering a simple and intuitive means of control.
None - Resistance Tolerance
Tolerance is the percentage of error in the resistor's resistance, or how much more or less you can expect a resistor's actual measured resistance to be from its stated resistance. A gold tolerance band is 5% tolerance, silver is 10%, and no band at all would mean a 20% tolerance.
20 - Actuator Diameter
Actuator Diameter in electronic components refers to the size of the actuator or moving part within a device that is responsible for initiating a mechanical action. This parameter is crucial in determining the overall size and performance of the component. The diameter of the actuator directly impacts factors such as speed, precision, and force exerted by the component. It is important to consider the actuator diameter when designing or selecting electronic components to ensure compatibility with the intended application and system requirements.
0.250 (6.35mm) - Rotation
In electronic components, "Rotation" refers to the physical orientation or position of the component on a circuit board. It specifies the angle at which the component should be placed on the board during assembly to ensure proper functionality and alignment with other components. Rotation is typically measured in degrees, with 0 degrees indicating the default orientation where the component's pins or leads align with the corresponding pads on the circuit board. Proper rotation is crucial for ensuring electrical connections are made correctly and for optimizing the overall performance and reliability of the electronic device.
300° - Size - Body
The parameter "Size - Body" in electronic components refers to the physical dimensions of the component's body or package. It typically includes measurements such as length, width, and height, which are critical for ensuring compatibility with circuit boards and other components. This parameter is vital for fitting components into designated spaces within electronic devices and affects factors like heat dissipation and overall performance. Proper understanding of the Size - Body specification helps engineers design efficient and compact electronic systems.
Rectangular - 0.992 x 0.717 Face (25.20mm x 18.20mm) - Number of Gangs1
- Resistance (Ohms)
Resistance (Ohms) is a fundamental property of electronic components that measures their opposition to the flow of electric current. It is denoted by the symbol "Ω" and is a measure of how much a component resists the flow of electricity. The higher the resistance value, the more difficult it is for current to pass through the component. Resistance is an important parameter in determining the behavior and functionality of electronic circuits, as it affects the amount of current flowing through the circuit and the voltage drop across the component. Components such as resistors are specifically designed to provide a certain amount of resistance to control the flow of current in a circuit.
10k - Bushing Type
In electronic components, the term "Bushing Type" refers to the design and structure of the bushing used in the component. A bushing is a type of insulating component that is used to provide mechanical support and electrical insulation in various electronic devices. The bushing type can vary based on factors such as material, shape, size, and mounting method.The bushing type is important in determining the overall performance and functionality of the electronic component. Different bushing types may be used depending on the specific requirements of the application, such as voltage rating, current capacity, environmental conditions, and space constraints. Common bushing types include threaded bushings, flanged bushings, and press-fit bushings.Overall, the bushing type plays a crucial role in ensuring the reliability, safety, and efficiency of electronic components by providing proper insulation and support for electrical connections. It is essential to consider the bushing type carefully when designing or selecting electronic components to meet the desired specifications and performance criteria.
STANDARD - Features
In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.
- - Shaft Diameter
The "Shaft Diameter" parameter in electronic components refers to the measurement of the diameter of the shaft or spindle of a component, such as a potentiometer, rotary encoder, or motor. This measurement is important for determining the compatibility of the component with other parts or equipment it needs to interface with. The shaft diameter is typically specified in millimeters or inches and plays a crucial role in ensuring proper fit and functionality within a system. It is essential to consider the shaft diameter when selecting and integrating electronic components to avoid compatibility issues and ensure smooth operation.
6.35 mm - Product Length
Product Length in electronic components refers to the physical measurement of an electronic part from one end to the other along its longest axis. It is a crucial specification that helps in determining compatibility with circuit boards, enclosures, and other components. Understanding the Product Length is essential for ensuring proper placement and assembly within electronic designs.
60.7 mm - Product Width
In electronic components, "Product Width" typically refers to the physical width or diameter of the component. It is an important parameter as it determines the size and form factor of the component, which in turn can impact its compatibility with other components or devices. The product width measurement is usually specified in millimeters or inches and is crucial for ensuring proper fit and alignment within a circuit or system. Designers and engineers often consider the product width along with other dimensions to ensure that the component will function correctly within the intended application.
20.4 mm - Product Length (mm)
The parameter "Product Length (mm)" in electronic components refers to the physical length of the component, typically measured in millimeters. This measurement is important for determining the size and dimensions of the component, which is crucial for fitting it into a circuit board or enclosure. It helps in ensuring proper alignment and spacing within the overall design of the electronic system. Manufacturers provide this specification to assist engineers and designers in selecting components that will fit and function correctly within their intended application.
60.7(mm) - Actuator Length
Actuator Length in electronic components refers to the physical length of the actuator, which is the part of the component responsible for initiating or controlling a mechanical action. The actuator length is an important parameter as it determines the range of motion or force that can be exerted by the component. In devices such as switches, valves, and motors, the actuator length directly impacts the efficiency and effectiveness of the component's operation. Designers and engineers consider the actuator length carefully to ensure that the component meets the required specifications and functions properly within the intended system.
1.969 (50.00mm) - Product Height (mm)
Product Height (mm) in electronic components refers to the measurement of the component's vertical dimension. It indicates how tall the component is when installed in a circuit or system. This parameter is crucial for determining compatibility with enclosures, ensuring adequate space for components on printed circuit boards, and facilitating proper airflow and cooling in electronic designs.
25.2(mm)