TRACO TPI 180-124A-M
TRACO TPI 180-124A-M
feed

TRACO TPI 180-124A-M

Manufacturer No:

TPI 180-124A-M

Manufacturer:

TRACO

Utmel No:

2549-TPI 180-124A-M

Package:

-

ECAD Model:

Description:

TRACOPOWER Power Supply, 24V dc, 7.5A, 180W, 1 Output 85 → 264V ac Input Voltage

Quantity:

Unit Price: $91.932231

Ext Price: $91.93

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 25

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $91.932231

    $91.93

  • 10

    $86.728520

    $867.29

  • 100

    $81.819358

    $8,181.94

  • 500

    $77.188074

    $38,594.04

  • 1000

    $72.818938

    $72,818.94

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
TPI 180-124A-M information

Specifications
TRACO TPI 180-124A-M technical specifications, attributes, parameters and parts with similar specifications to TRACO TPI 180-124A-M.
  • Type
    Parameter
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Chassis Mount
  • Package
    Bulk
  • Mfr
    PEI-Genesis
  • Product Status
    Active
  • Package Type
    Open Frame
  • Voltage - Output 5
    -
  • Voltage-Output 1
    24V
  • Voltage - Output 6
    -
  • Standard Number
    62368-1
  • Maximum Operating Temperature

    the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    + 85 C
  • Open Frame/Enclosed
    Enclosed
  • Minimum Operating Temperature
    - 40 C
  • Mounting Styles
    Chassis
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    *
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C ~ 85°C (With Derating)
  • Size / Dimension

    In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.

    3.00 L x 2.00 W x 1.24 H (76.2mm x 50.8mm x 31.5mm)
  • Type
    Open Frame
  • Applications

    The parameter "Applications" in electronic components refers to the specific uses or functions for which a component is designed. It encompasses various fields such as consumer electronics, industrial automation, telecommunications, automotive, and medical devices. Understanding the applications helps in selecting the right components for a particular design based on performance, reliability, and compatibility requirements. This parameter also guides manufacturers in targeting their products to relevant markets and customer needs.

    ITE (Commercial)
  • Power (Watts)

    The parameter "Power (Watts)" in electronic components refers to the amount of electrical energy consumed or dissipated by the component. It is a measure of how much energy the component can handle or generate. Power is typically measured in watts, which is a unit of power that indicates the rate at which energy is transferred. Understanding the power rating of electronic components is crucial for ensuring they operate within their specified limits to prevent overheating and potential damage. It is important to consider power requirements when designing circuits or selecting components to ensure proper functionality and reliability.

    150W (180W Forced Air)
  • Power Rating

    The "Power Rating" of an electronic component refers to the maximum amount of power that the component can handle or dissipate without being damaged. It is typically measured in watts and is an important specification to consider when designing or selecting components for a circuit. Exceeding the power rating of a component can lead to overheating, malfunction, or even permanent damage. It is crucial to ensure that the power rating of each component in a circuit is sufficient to handle the power levels expected during normal operation to maintain the reliability and longevity of the electronic system.

    180W
  • Number of Outputs
    1
  • Approval Agency

    The parameter "Approval Agency" in electronic components refers to the organization responsible for testing and certifying that a component meets specific safety, quality, and performance standards. These agencies evaluate products to ensure compliance with industry regulations and standards, providing assurance to manufacturers and consumers. Approval from recognized agencies can enhance a component's marketability and acceptance in various applications, particularly in sectors like automotive, aerospace, and healthcare. Common approval agencies include Underwriters Laboratories (UL), International Electrotechnical Commission (IEC), and the American National Standards Institute (ANSI).

    CB, CE, cURus, EAC, UKCA
  • Efficiency

    Efficiency in electronic components refers to the ratio of useful output energy or power to the input energy or power. It is a measure of how effectively a component converts input energy into output energy without wasting any energy in the process. Higher efficiency indicates that the component is more effective in performing its intended function while minimizing energy losses. Efficiency is an important parameter in electronic components such as power supplies, amplifiers, and motors, as it directly impacts the overall performance and energy consumption of the system. Manufacturers often specify the efficiency rating of their components to help users understand how efficiently the component operates under different conditions.

    94%
  • Voltage - Isolation

    Voltage - Isolation is a parameter in electronic components that refers to the maximum voltage that can be safely applied between two isolated points without causing electrical breakdown or leakage. It is a crucial specification for components such as transformers, optocouplers, and capacitors that require isolation to prevent electrical interference or safety hazards. The voltage isolation rating ensures that the component can withstand the specified voltage without compromising its performance or safety. It is typically measured in volts and is an important consideration when designing circuits that require isolation between different parts of the system.

    3 kV
  • Output Voltage

    Output voltage is a crucial parameter in electronic components that refers to the voltage level produced by the component as a result of its operation. It represents the electrical potential difference between the output terminal of the component and a reference point, typically ground. The output voltage is a key factor in determining the performance and functionality of the component, as it dictates the level of voltage that will be delivered to the connected circuit or load. It is often specified in datasheets and technical specifications to ensure compatibility and proper functioning within a given system.

    24V dc
  • Output Current

    The rated output current is the maximum load current that a power supply can provide at a specified ambient temperature. A power supply can never provide more current that it's rated output current unless there is a fault, such as short circuit at the load.

    7.5A
  • Output Power

    That power available at a specified output of a device under specified conditions of operation.

    180 W
  • Voltage - Output 2

    Voltage - Output 2 is a parameter that refers to the voltage level of the second output of an electronic component, such as a power supply or amplifier. This parameter indicates the voltage that is provided or generated by the second output of the component. It is important to consider this parameter when designing or using electronic circuits, as it determines the voltage level available for powering or driving other components in the system. Understanding the voltage output characteristics of electronic components is crucial for ensuring proper functionality and compatibility within a circuit or system.

    -
  • Current - Output 1

    Current - Output 1 is a parameter commonly found in electronic components, particularly in datasheets for devices such as integrated circuits or power supplies. This parameter refers to the maximum amount of current that can be sourced or sunk by the output pin or terminal labeled as "Output 1" on the component. It is important to understand this parameter as it indicates the capability of the component to deliver or handle current at that specific output. Exceeding the specified current limit may lead to overheating, damage to the component, or malfunctioning of the circuit in which it is used. It is crucial to consider this parameter when designing circuits to ensure proper operation and reliability of the electronic system.

    7.5 A
  • Voltage - Output 3

    Voltage - Output 3 is a parameter that refers to the output voltage level of a specific output channel in an electronic component, such as a power supply or amplifier. This parameter indicates the voltage that is provided by the third output of the component when it is in operation. It is important to consider this parameter when designing or troubleshooting electronic circuits, as it determines the voltage level that will be delivered to connected devices or components. Monitoring and adjusting the Voltage - Output 3 parameter ensures that the electronic component functions correctly and delivers the required voltage for proper operation of the system.

    -
  • Voltage - Output 4

    Voltage - Output 4 refers to the specific output voltage level provided by an electronic component or device, typically in a multi-output configuration. It signifies the electrical potential difference available at the fourth output terminal. This parameter is crucial for ensuring compatibility and proper operation with connected circuits and devices, as it determines the power supply and signal characteristics for that particular output. The specification is essential for engineers and designers when selecting components for electronic systems.

    -
  • Minimum Load Required

    The parameter "Minimum Load Required" in electronic components refers to the minimum amount of electrical load that must be connected to the component in order for it to function properly. This load is typically specified in terms of current or power and is necessary to ensure that the component operates within its specified operating conditions. Failing to meet the minimum load requirement can result in issues such as unstable operation, overheating, or even damage to the component. It is important to carefully adhere to the minimum load requirements specified by the manufacturer to ensure the reliable and safe operation of the electronic component.

    No
  • Embedded

    The term "Embedded" in electronic components refers to a system or device that is designed to perform specific functions within a larger system or product. These components are typically integrated into a larger system and are not meant to be easily removed or replaced. Embedded components are often used in applications where space is limited, and where specific functions need to be performed efficiently and reliably. These components can include microcontrollers, sensors, memory chips, and other specialized hardware that work together to provide the desired functionality within the overall system. Overall, embedded components play a crucial role in the operation of various electronic devices and systems by providing specific functions and capabilities.

    No
  • Product

    In the context of electronic components, the parameter "Product" typically refers to the specific item or device being discussed or analyzed. It can refer to a physical electronic component such as a resistor, capacitor, transistor, or integrated circuit. The product parameter may also encompass more complex electronic devices like sensors, displays, microcontrollers, or communication modules.Understanding the product parameter is crucial in electronics as it helps identify the characteristics, specifications, and functionality of the component or device in question. This information is essential for selecting the right components for a circuit design, troubleshooting issues, or comparing different products for a particular application. Manufacturers often provide detailed product datasheets that outline key specifications, performance characteristics, and application guidelines to assist engineers and designers in utilizing the component effectively.

    Switching Supplies
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    Adjustable Output, DC Input Capable, PFC, Standby Output, Universal Input
  • Input Voltage

    Input voltage is the voltage supplied to an electronic component or circuit for it to function properly. It is the driving force that enables the component to perform its intended tasks, such as amplifying signals or powering devices. The input voltage can vary depending on the design specifications of the component and its intended application. Exceeding the specified input voltage can lead to damage or failure of the component.

    85 → 264V ac
  • Width
    62 mm
  • Height
    44.5 mm
  • Length
    91.4 mm
0 Similar Products Remaining