Vishay 2SJ507
Vishay 2SJ507
feed

Vishay 2SJ507

Manufacturer No:

2SJ507

Manufacturer:

Vishay

Utmel No:

2668-2SJ507

Package:

-

ECAD Model:

Description:

2SJ507 datasheet pdf and Unclassified product details from Vishay stock available at Utmel

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
2SJ507 information

Specifications
Product Details
Vishay 2SJ507 technical specifications, attributes, parameters and parts with similar specifications to Vishay 2SJ507.
  • Type
    Parameter
  • Contact Plating

    Contact plating (finish) provides corrosion protection for base metals and optimizes the mechanical and electrical properties of the contact interfaces.

    Tin
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    NO
  • Number of Terminals
    3
  • Transistor Element Material

    The "Transistor Element Material" parameter in electronic components refers to the material used to construct the transistor within the component. Transistors are semiconductor devices that amplify or switch electronic signals and are a fundamental building block in electronic circuits. The material used for the transistor element can significantly impact the performance and characteristics of the component. Common materials used for transistor elements include silicon, germanium, and gallium arsenide, each with its own unique properties and suitability for different applications. The choice of transistor element material is crucial in designing electronic components to meet specific performance requirements such as speed, power efficiency, and temperature tolerance.

    SILICON
  • Body Orientation
    Right Angle
  • Termination Method
    IDT
  • Base/Housing Material
    Polyamide 66
  • Contact Materials
    Brass
  • Mounting
    Cable Mount
  • Package Description
    CYLINDRICAL, O-PBCY-T3
  • Package Style
    CYLINDRICAL
  • Package Body Material
    PLASTIC/EPOXY
  • Operating Temperature-Max
    150 °C
  • Rohs Code
    No
  • Manufacturer Part Number
    2SJ507
  • Package Shape
    ROUND
  • Manufacturer
    Toshiba America Electronic Components
  • Number of Elements
    1
  • Part Life Cycle Code
    Obsolete
  • Ihs Manufacturer
    TOSHIBA CORP
  • Risk Rank
    5.92
  • Part Package Code
    TO-92
  • Drain Current-Max (ID)
    1 A
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e0
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    No
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    TIN LEAD
  • Gender

    In the context of electronic components, the parameter "Gender" typically refers to the physical characteristics of connectors or interfaces that determine how they can be mated together. Connectors are often designed with specific gender types, such as male or female, to ensure proper alignment and connection between devices. A male connector typically has protruding pins or plugs that fit into a corresponding female connector, which has receptacles or sockets to receive the pins. This design helps prevent incorrect connections and ensures a secure and reliable electrical connection. Understanding the gender of connectors is crucial when designing or assembling electronic systems to ensure compatibility and proper functionality. It is essential to match the gender of connectors correctly to avoid damage and ensure optimal performance of the electronic components.

    F
  • Subcategory
    Other Transistors
  • Pitch

    In electronic components, "Pitch" refers to the distance between the center of one pin or lead to the center of the adjacent pin or lead on a component, such as an integrated circuit (IC) or a connector. It is a crucial parameter as it determines the spacing and alignment of the pins or leads on a component, which in turn affects how the component can be mounted on a circuit board or connected to other components.The pitch measurement is typically expressed in millimeters (mm) or inches (in) and plays a significant role in determining the overall size and layout of a circuit board. Components with different pitches may require specific types of circuit boards or connectors to ensure proper alignment and connection. Designers must carefully consider the pitch of components when designing circuit layouts to ensure compatibility and proper functionality of the electronic system.

    5.0000 mm
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    BOTTOM
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    THROUGH-HOLE
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    unknown
  • Pin Count

    a count of all of the component leads (or pins)

    3
  • JESD-30 Code

    JESD-30 Code refers to a standardized descriptive designation system established by JEDEC for semiconductor-device packages. This system provides a systematic method for generating designators that convey essential information about the package's physical characteristics, such as size and shape, which aids in component identification and selection. By using JESD-30 codes, manufacturers and engineers can ensure consistency and clarity in the specification of semiconductor packages across various applications and industries.

    O-PBCY-T3
  • Qualification Status

    An indicator of formal certification of qualifications.

    Not Qualified
  • Housing Color

    Housing color in electronic components refers to the color of the protective casing or enclosure that surrounds the component. It can play a role in visual identification, aiding in easy recognition during assembly or maintenance. Additionally, the housing color may also have implications for heat dissipation, aesthetic considerations, or regulatory compliance depending on the application or industry standards.

    Gray
  • Configuration

    The parameter "Configuration" in electronic components refers to the specific arrangement or setup of the components within a circuit or system. It encompasses how individual elements are interconnected and their physical layout. Configuration can affect the functionality, performance, and efficiency of the electronic system, and may influence factors such as signal flow, impedance, and power distribution. Understanding the configuration is essential for design, troubleshooting, and optimizing electronic devices.

    SINGLE WITH BUILT-IN DIODE
  • Operating Mode

    A phase of operation during the operation and maintenance stages of the life cycle of a facility.

    ENHANCEMENT MODE
  • Transistor Application

    In the context of electronic components, the parameter "Transistor Application" refers to the specific purpose or function for which a transistor is designed and used. Transistors are semiconductor devices that can amplify or switch electronic signals and are commonly used in various electronic circuits. The application of a transistor can vary widely depending on its design and characteristics, such as whether it is intended for audio amplification, digital logic, power control, or radio frequency applications. Understanding the transistor application is important for selecting the right type of transistor for a particular circuit or system to ensure optimal performance and functionality.

    SWITCHING
  • Polarity/Channel Type

    In electronic components, the parameter "Polarity/Channel Type" refers to the characteristic that determines the direction of current flow or the type of signal that can be accommodated by the component. For components like diodes and transistors, polarity indicates the direction in which current can flow through the component, such as forward bias or reverse bias for diodes. For components like MOSFETs or JFETs, the channel type refers to whether the component is an N-channel or P-channel device, which determines the type of charge carriers that carry current through the component. Understanding the polarity or channel type of a component is crucial for proper circuit design and ensuring that the component is connected correctly to achieve the desired functionality.

    P-CHANNEL
  • Drain Current-Max (Abs) (ID)

    The parameter "Drain Current-Max (Abs) (ID)" in electronic components refers to the maximum current that can flow from the drain to the source terminal of a field-effect transistor (FET) or a similar device. It is a crucial specification that indicates the maximum current handling capability of the component before it reaches its saturation point or gets damaged. This parameter is typically specified in amperes (A) and helps designers ensure that the component can safely handle the expected current levels in a circuit without exceeding its limits. It is important to consider this parameter when designing circuits to prevent overloading the component and ensure reliable operation.

    1 A
  • Drain-source On Resistance-Max

    Drain-source On Resistance-Max, commonly referred to as RDS(on) max, is a specification for MOSFETs that indicates the maximum resistance between the drain and source terminals when the device is turned on. This parameter is critical for assessing the efficiency of a MOSFET in a circuit, as lower values result in reduced power loss and heat generation during operation. It is measured in ohms and is influenced by factors such as temperature and gate-to-source voltage. Understanding RDS(on) max is essential for optimizing performance in power management and switching applications.

    1 Ω
  • DS Breakdown Voltage-Min

    The parameter "DS Breakdown Voltage-Min" in electronic components refers to the minimum voltage at which the device will experience a breakdown in its Drain-Source (DS) junction. This voltage represents the point at which the component can no longer effectively regulate or control the flow of current, leading to potential damage or failure. It is an important specification to consider when designing or selecting components for a circuit, as exceeding this breakdown voltage can result in permanent damage to the device. Manufacturers provide this specification to ensure proper usage and to help engineers determine the appropriate operating conditions for the component.

    60 V
  • FET Technology

    Field-Effect Transistor (FET) technology is a type of semiconductor device commonly used in electronic components such as transistors and integrated circuits. FETs operate by controlling the flow of current through a semiconductor channel using an electric field. There are several types of FETs, including Metal-Oxide-Semiconductor FETs (MOSFETs) and Junction FETs (JFETs), each with its own characteristics and applications. FET technology offers advantages such as high input impedance, low power consumption, and fast switching speeds, making it suitable for a wide range of electronic devices and circuits. Overall, FET technology plays a crucial role in modern electronics by enabling efficient and reliable signal processing and amplification.

    METAL-OXIDE SEMICONDUCTOR
  • Power Dissipation-Max (Abs)

    Power Dissipation-Max (Abs) refers to the maximum amount of power that an electronic component can dissipate without undergoing thermal damage or degradation. This value is crucial for ensuring reliable operation, as exceeding it can result in overheating and failure. It is typically specified in watts and serves as a critical parameter for designers to determine proper heat management strategies in circuits. Properly managing the power dissipation is essential for the longevity and performance of electronic devices.

    0.9 W
  • Product Length

    Product Length in electronic components refers to the physical measurement of an electronic part from one end to the other along its longest axis. It is a crucial specification that helps in determining compatibility with circuit boards, enclosures, and other components. Understanding the Product Length is essential for ensuring proper placement and assembly within electronic designs.

    49.9 mm
0 Similar Products Remaining

Product Description:

The 2SJ507 is a P-CHANNEL, single with built-in diode, metal-oxide semiconductor (MOS) transistor from Toshiba America Electronic Components. This transistor is designed for switching applications and is packaged in a TO-92 package, which is a cylindrical, plastic/epoxy package with a through-hole terminal form. The transistor has a maximum drain current of 1A and a maximum power dissipation of 0.9W.

Features:

  • P-CHANNEL, single with built-in diode, metal-oxide semiconductor (MOS) transistor
  • Maximum drain current of 1A
  • Maximum power dissipation of 0.9W
  • TO-92 package with through-hole terminal form
  • Operating temperature range of -55°C to 150°C

Applications:

  • Switching applications
  • General-purpose electronics

Alternative Parts:

  • 2SJ507 is an obsolete part, and alternative parts may be available. Please contact the manufacturer or a distributor for more information.

Embedded Modules:

  • This transistor is not typically used as an embedded module in other products.

FAQs:

Q: What is the maximum drain current of the 2SJ507 transistor? A: The maximum drain current is 1A.

Q: What is the maximum power dissipation of the 2SJ507 transistor? A: The maximum power dissipation is 0.9W.

Q: What is the operating temperature range of the 2SJ507 transistor? A: The operating temperature range is -55°C to 150°C.

Q: Is the 2SJ507 transistor RoHS compliant? A: No, the 2SJ507 transistor is not RoHS compliant.

Q: Is the 2SJ507 transistor surface mountable? A: No, the 2SJ507 transistor is not surface mountable.