Vishay Intertechnologies TCST1202
Vishay Intertechnologies TCST1202
feed

Vishay Intertechnologies TCST1202

Manufacturer No:

TCST1202

Utmel No:

2668-TCST1202

Package:

-

ECAD Model:

Description:

Transistor Output Slotted Switch, 1-Channel, 3.1mm Slot Width, 11.90 X 6.30 MM, 10.80 MM HEIGHT, ROHS COMPLIANT PACKAGE-4

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
TCST1202 information

Specifications
Documents & Media
Vishay Intertechnologies TCST1202 technical specifications, attributes, parameters and parts with similar specifications to Vishay Intertechnologies TCST1202.
  • Type
    Parameter
  • Factory Lead Time
    6 Weeks, 1 Day
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    NO
  • Mounting Feature

    a process by which the operating system makes files and directories on a storage device (such as hard drive, CD-ROM, or network share) available for users to access via the computer's file system.

    THROUGH HOLE MOUNT
  • Type of capacitor
    ceramic
  • Kind of capacitor
    MLCC
  • Mounting
    SMD
  • Case - inch
    0805
  • Case - mm
    2012
  • Capacitors series
    KGM
  • Rohs Code
    Yes
  • Part Life Cycle Code
    Active
  • Ihs Manufacturer
    VISHAY INTERTECHNOLOGY INC
  • Package Description
    11.90 X 6.30 MM, 10.80 MM HEIGHT, ROHS COMPLIANT PACKAGE-4
  • Operating Temperature-Max
    85 °C
  • Operating Temperature-Min
    -55 °C
  • Tolerance

    In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.

    ±5%
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    MATTE TIN
  • Capacitance

    Capacitance is a fundamental electrical property of electronic components that describes their ability to store electrical energy in the form of an electric field. It is measured in farads (F) and represents the ratio of the amount of electric charge stored on a component to the voltage across it. Capacitors are passive components that exhibit capacitance and are commonly used in electronic circuits for various purposes such as filtering, energy storage, timing, and coupling. Capacitance plays a crucial role in determining the behavior and performance of electronic systems by influencing factors like signal propagation, frequency response, and power consumption.

    10nF
  • Number of Functions
    1
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    compliant
  • Dielectric

    Dielectric is a term used in the context of electronic components to refer to a material's ability to store electrical energy in an electric field. It is a key parameter in capacitors, insulators, and other electronic devices. Dielectric materials have high electrical resistance and low conductivity, allowing them to separate and insulate conductive materials while still allowing the passage of electric fields. The dielectric constant, also known as relative permittivity, is a measure of a material's ability to store electrical energy and is an important factor in determining the capacitance of a component. Overall, the dielectric property plays a crucial role in the design and performance of various electronic components.

    C0G (NP0)
  • Configuration

    The parameter "Configuration" in electronic components refers to the specific arrangement or setup of the components within a circuit or system. It encompasses how individual elements are interconnected and their physical layout. Configuration can affect the functionality, performance, and efficiency of the electronic system, and may influence factors such as signal flow, impedance, and power distribution. Understanding the configuration is essential for design, troubleshooting, and optimizing electronic devices.

    SINGLE
  • Optoelectronic Device Type

    Optoelectronic Device Type refers to the classification of electronic components that can both detect and emit light. These devices convert electrical signals into light or vice versa, making them essential for applications such as optical communication, sensing, and display technologies. Common types of optoelectronic devices include light-emitting diodes (LEDs), photodiodes, phototransistors, and laser diodes. Understanding the optoelectronic device type is crucial for selecting the appropriate component for a specific application based on factors such as wavelength, power output, and sensitivity.

    TRANSISTOR OUTPUT SLOTTED SWITCH
  • Forward Current-Max

    Forward Current-Max is a parameter used to specify the maximum amount of current that an electronic component, such as a diode or LED, can safely handle when it is forward-biased. This parameter is crucial for determining the operating limits of the component to prevent damage or failure due to excessive current flow. Exceeding the specified Forward Current-Max can lead to overheating, degradation of the component, or even permanent damage. It is important to carefully consider this parameter when designing circuits to ensure the component operates within its safe limits.

    0.06 A
  • On-State Current-Max

    The parameter "On-State Current-Max" in electronic components refers to the maximum current that can flow through the component when it is in the fully conducting state, also known as the "on-state." This parameter is crucial for determining the maximum load that the component can handle without getting damaged. It is typically specified in the component's datasheet and is important for ensuring the safe and reliable operation of the component within its specified limits. Designers and engineers use this parameter to select components that can handle the required current levels in their circuits without exceeding the maximum ratings.

    0.002 A
  • Dark Current-Max

    Dark Current-Max refers to the maximum amount of current that flows through a photodetector or similar electronic component in the absence of incident light. It is an important parameter that indicates the level of noise in a sensor and is typically measured in terms of amperes or milliamperes. High dark current values can lead to decreased signal-to-noise ratio, affecting the overall sensitivity and performance of the device in low-light conditions. Understanding this parameter is crucial for applications that require precise light detection and measurement.

    100 nA
  • Output Circuit Type

    The parameter "Output Circuit Type" in electronic components refers to the configuration of the output circuitry of a device. It describes how the output signal is generated and delivered by the component. Common types of output circuit configurations include open collector, push-pull, tri-state, and high impedance. The choice of output circuit type can impact factors such as signal strength, compatibility with other components, and power consumption. Understanding the output circuit type is important for proper integration and operation of electronic components within a circuit or system.

    Transistor
  • Coll-Emtr Bkdn Voltage-Min

    Coll-Emtr Bkdn Voltage-Min refers to the minimum voltage required for the breakdown of a collector-emitter junction in bipolar transistors. It indicates the threshold at which the transistor can no longer effectively block current flow in the off state. Exceeding this voltage can lead to unwanted conduction and potential damage to the device. This parameter is essential for ensuring reliable operation in electronic circuits, especially in high-voltage applications. Manufacturers specify this value to help designers select appropriate components for their specific needs.

    70 V
  • On-State Voltage-Max

    The parameter "On-State Voltage-Max" in electronic components refers to the maximum voltage drop across the component when it is in the fully conducting state. This parameter is important because it indicates the maximum voltage that can be applied across the component while still allowing current to flow through it efficiently. Exceeding this voltage may lead to overheating, damage, or even failure of the component. Designers and engineers use this parameter to ensure that the component is operated within its safe operating limits to maintain reliability and performance in the circuit.

    70 V
  • Response Time-Max

    Response Time-Max refers to the maximum time it takes for an electronic component to respond to an input signal. This parameter is critical in determining the speed at which a device can switch states or produce an output. A lower Response Time-Max indicates a faster device, suitable for high-speed applications. This metric is essential in assessing the performance of components like transistors, operational amplifiers, and digital circuits.

    0.00001 s
  • Slot Width-Nom

    Slot Width-Nom refers to the nominal width of a slot or opening in an electronic component, typically used for mounting or connecting purposes. It is a critical parameter that determines the fit and alignment of components within a device or system. Proper slot width ensures reliable electrical connections and mechanical stability during the operation of the product.

    3.1 mm
  • On-state Collector Current-Nom

    On-state Collector Current-Nom refers to the nominal value of the current that can flow through the collector terminal of a transistor when it is in the on-state or active mode. This parameter is crucial for determining the device's ability to handle current in practical applications. It indicates the maximum continuous current that the device can conduct safely without overheating or failing. Typically specified in amperes, it plays a significant role in the design and selection of transistors for various electronic circuits.

    2 mA
  • Gap Size

    In electronic components, "Gap Size" refers to the distance between two conductive elements or components within a circuit. It is a crucial parameter that determines the electrical characteristics and performance of the component. The gap size can affect factors such as impedance, capacitance, and signal integrity within the circuit. Properly controlling and maintaining the gap size is essential for ensuring optimal functionality and reliability of electronic components. Manufacturers often specify the gap size in their component datasheets to help engineers and designers select the appropriate components for their applications.

    3.1 mm
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Vishay Intertechnologies TCST1202.