Würth Elektronik 820422711
Würth Elektronik 820422711
feed

Würth Elektronik 820422711

Manufacturer No:

820422711

Manufacturer:

Würth Elektronik

Utmel No:

2760-820422711

Package:

Disc 20mm

Datasheet:

820422711

ECAD Model:

Description:

DISK VARISTOR HIGHSURGE 20MM; 27

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 1312

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
820422711 information

Specifications
Documents & Media
Product Details
Product Comparison
Würth Elektronik 820422711 technical specifications, attributes, parameters and parts with similar specifications to Würth Elektronik 820422711.
  • Type
    Parameter
  • Factory Lead Time
    8 Weeks
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    Disc 20mm
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~85°C TA
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tape & Reel (TR)
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    125°C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    -40°C
  • Capacitance

    Capacitance is a fundamental electrical property of electronic components that describes their ability to store electrical energy in the form of an electric field. It is measured in farads (F) and represents the ratio of the amount of electric charge stored on a component to the voltage across it. Capacitors are passive components that exhibit capacitance and are commonly used in electronic circuits for various purposes such as filtering, energy storage, timing, and coupling. Capacitance plays a crucial role in determining the behavior and performance of electronic systems by influencing factors like signal propagation, frequency response, and power consumption.

    860pF
  • Voltage - Rated DC

    Voltage - Rated DC is a parameter that specifies the maximum direct current (DC) voltage that an electronic component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component in a circuit. Exceeding the rated DC voltage can lead to overheating, breakdown, or even permanent damage to the component. It is important to carefully consider this parameter when designing or selecting components for a circuit to prevent any potential issues related to voltage overload.

    350V
  • Voltage - Rated AC

    Voltage - Rated AC is a parameter that specifies the maximum alternating current (AC) voltage that an electronic component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component within an electrical circuit. It is typically expressed in volts (V) and helps users determine the compatibility of the component with the voltage levels present in the circuit. Exceeding the rated AC voltage can lead to overheating, malfunction, or permanent damage to the component, so it is important to adhere to this specification when designing or using electronic systems.

    275V
  • Lead Pitch

    Lead pitch in electronic components refers to the distance between the center of one lead (or pin) of a component to the center of the adjacent lead. It is an important parameter to consider when designing and assembling electronic circuits, as it determines the spacing required on a circuit board for proper placement and soldering of the component. Lead pitch is typically specified in millimeters or inches and can vary depending on the type of component, such as integrated circuits, resistors, capacitors, and connectors. Choosing the correct lead pitch ensures proper alignment and connection of components on a circuit board, ultimately affecting the functionality and reliability of the electronic device.

    10mm
  • Number of Circuits
    1
  • Max Voltage Rating (AC)

    The parameter "Max Voltage Rating (AC)" in electronic components refers to the maximum alternating current (AC) voltage that the component can safely handle without being damaged. This rating is important for ensuring the component's longevity and reliability in a circuit. Exceeding the maximum voltage rating can lead to overheating, breakdown, or even permanent damage to the component. It is crucial to select components with voltage ratings that are suitable for the intended application to prevent malfunctions or safety hazards in the circuit.

    275V
  • Max Voltage Rating (DC)

    The parameter "Max Voltage Rating (DC)" in electronic components refers to the maximum direct current (DC) voltage that the component can safely handle without being damaged. This rating is crucial for ensuring the proper functioning and longevity of the component within an electrical circuit. Exceeding the maximum voltage rating can lead to breakdown or failure of the component, potentially causing damage to the entire circuit. It is important to carefully consider and adhere to the specified max voltage rating when designing or working with electronic circuits to prevent any potential risks or malfunctions.

    350V
  • Clamping Voltage

    Clamping voltage is a term used in electronic components, particularly in devices like diodes and transient voltage suppressors. It refers to the maximum voltage level at which the component can effectively limit or clamp the voltage across its terminals. When the voltage across the component exceeds the clamping voltage, the component conducts and effectively limits the voltage to that level, protecting the circuit from overvoltage conditions. Clamping voltage is an important parameter to consider when selecting components for applications where voltage spikes or surges may occur, as it determines the level at which the component will start to protect the circuit.

    710V
  • Capacitance @ Frequency

    Capacitance @ Frequency refers to the value of capacitance that a capacitor exhibits when subjected to an alternating current (AC) signal at a specific frequency. This parameter highlights how the capacitor's behavior changes with frequency, as capacitance can vary due to effects like equivalent series resistance (ESR) and loss factors. Typically measured in microfarads (µF) or picofarads (pF), this value is crucial for applications involving signal coupling, filtering, and timing where AC signals are prevalent. Understanding capacitance at different frequencies helps in selecting the right capacitor for specific circuit functions.

    860pF @ 1kHz
  • Varistor Voltage (Max)

    The parameter "Varistor Voltage (Max)" refers to the maximum voltage that a varistor can withstand without breaking down. A varistor is a type of electronic component that is used to protect circuits from overvoltage conditions by rapidly changing its resistance in response to voltage fluctuations. When the voltage across a varistor exceeds its maximum rating, it will conduct current and dissipate the excess energy as heat, thereby protecting the circuit. It is important to select a varistor with a maximum voltage rating that is higher than the expected operating voltage to ensure reliable protection against overvoltage events.

    473V
  • Energy

    In electronic components, "Energy" refers to the amount of electrical power consumed or stored by the component during operation. It is a crucial parameter that determines the efficiency and performance of the component. Energy consumption is typically measured in units such as watt-hours (Wh) or joules (J), while energy storage is often quantified in terms of capacitance or battery capacity. Understanding the energy characteristics of electronic components is essential for designing efficient and reliable electronic systems.

    303J
  • Varistor Voltage (Min)

    Varistor Voltage (Min) is the minimum voltage at which a varistor begins to conduct significantly and clamp voltage spikes. It is a critical parameter as it indicates the threshold for the protective action of the varistor. When the voltage exceeds this level, the varistor transitions from a high-resistance state to a low-resistance state, providing a path to divert excess current. This feature helps protect electronic circuits from transient voltage surges.

    387V
  • Varistor Voltage (Typ)

    The parameter "Varistor Voltage (Typ)" in electronic components refers to the typical voltage at which a varistor begins to conduct significantly. A varistor is a type of voltage-dependent resistor that is commonly used to protect electronic circuits from voltage spikes and surges. When the voltage across a varistor exceeds its varistor voltage, the device starts to conduct and shunt the excess voltage to protect the circuit. The "Typ" designation indicates that the specified voltage is a typical value, and actual varistor voltages may vary slightly within a specified range. Understanding the varistor voltage is crucial for selecting the appropriate varistor for a given application to ensure effective protection against voltage transients.

    430V
  • Maximum AC Volts

    Maximum AC Volts is a parameter that specifies the maximum voltage level that an electronic component can safely handle when operating with an alternating current (AC) input. This parameter is crucial for ensuring the component's reliability and longevity, as exceeding the maximum AC voltage can lead to damage or failure. It is typically expressed in volts and is determined through testing and analysis of the component's electrical characteristics. Designers and engineers must carefully consider the maximum AC volts rating when selecting components for a circuit to prevent overloading and potential hazards.

    275V
  • Varistor Voltage

    A varistor is an electronic component that is used to protect circuits from overvoltage conditions. The varistor voltage, also known as the "clamping voltage" or "breakdown voltage," is the voltage level at which the varistor begins to conduct significantly and divert excess current away from the circuit. When the voltage across the varistor exceeds its varistor voltage, the varistor's resistance decreases rapidly, allowing it to absorb the excess energy and protect the circuit components. Varistor voltage is an important parameter to consider when selecting a varistor for a specific application, as it determines the level of overvoltage protection provided by the component.

    430V
  • Maximum DC Volts

    Maximum DC Volts is a parameter that specifies the maximum voltage that an electronic component can safely handle when operating with direct current (DC) power. This value is crucial for ensuring the component's longevity and preventing damage due to overvoltage. Exceeding the maximum DC voltage rating can lead to permanent damage or failure of the component. It is important to carefully consider this parameter when designing or selecting electronic components for a circuit to ensure proper functionality and reliability.

    350V
  • Current - Surge

    The parameter "Current - Surge" in electronic components refers to the maximum current that a component can handle for a short duration without being damaged. Surge current is typically higher than the component's rated continuous current and is often associated with transient events such as power surges or inrush currents during startup. It is important to consider the surge current rating when designing or selecting components to ensure they can withstand sudden spikes in current without failing. Exceeding the surge current rating can lead to overheating, component damage, or even system failure.

    10kA
  • Clamping Current

    Clamping current refers to the maximum current that can safely pass through a protective device, such as a surge protector or a transient voltage suppressor, before it begins to conduct and limit the voltage. This current level is crucial for protecting sensitive electronic components from damage during voltage spikes or surges. It ensures that the device will divert excessive current away from the circuit, thereby preventing potential failure of the components being protected.

    100A
  • Diameter

    In electronic components, the parameter "Diameter" typically refers to the measurement of the width of a circular component, such as a resistor, capacitor, or inductor. It is a crucial dimension that helps determine the physical size and fit of the component within a circuit or on a circuit board. The diameter is usually measured in millimeters (mm) or inches (in) and is important for ensuring proper placement and soldering of the component during assembly. Understanding the diameter of electronic components is essential for selecting the right size for a specific application and ensuring compatibility with other components and the overall design of the circuit.

    23mm
  • Thickness

    Thickness in electronic components refers to the measurement of how thick a particular material or layer is within the component structure. It can pertain to various aspects, such as the thickness of a substrate, a dielectric layer, or conductive traces. This parameter is crucial as it impacts the electrical, mechanical, and thermal properties of the component, influencing its performance and reliability in electronic circuits.

    5.7mm
  • REACH SVHC

    The parameter "REACH SVHC" in electronic components refers to the compliance with the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation regarding Substances of Very High Concern (SVHC). SVHCs are substances that may have serious effects on human health or the environment, and their use is regulated under REACH to ensure their safe handling and minimize their impact.Manufacturers of electronic components need to declare if their products contain any SVHCs above a certain threshold concentration and provide information on the safe use of these substances. This information allows customers to make informed decisions about the potential risks associated with using the components and take appropriate measures to mitigate any hazards.Ensuring compliance with REACH SVHC requirements is essential for electronics manufacturers to meet regulatory standards, protect human health and the environment, and maintain transparency in their supply chain. It also demonstrates a commitment to sustainability and responsible manufacturing practices in the electronics industry.

    Unknown
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Würth Elektronik 820422711.

Product Description

Description: The Würth Elektronik part number 820422711 is a high-performance TVS (Transient Voltage Suppressor) varistor designed to protect electronic circuits from voltage spikes and transient surges. This component is part of Würth Elektronik's extensive range of circuit protection solutions, ensuring reliable operation in various applications.

Features: - High Clamping Voltage: The varistor offers a clamping voltage of up to 710V, providing robust protection against voltage spikes. - High Surge Current Capability: With a surge current rating of 10kA, this varistor can handle significant transient events. - Low Capacitance: The component has a low capacitance of 860pF at 1kHz, minimizing its impact on circuit performance. - High Operating Temperature Range: The varistor operates effectively within a temperature range of -40°C to 125°C, making it suitable for harsh environments. - Compliance with RoHS3: The product is compliant with RoHS3 regulations, ensuring it meets stringent environmental standards.

Applications: 1. Primary Applications: - Electrical Systems Protection: Ideal for protecting electrical systems from voltage spikes and transient surges in industrial settings. - Automotive Electronics: Used in automotive systems to safeguard against electrical disturbances caused by engine operations or other transient events. - Telecommunications Equipment: Protects telecommunications equipment from lightning strikes and other transient voltage surges.

  1. Secondary Applications:
  2. Medical Devices: Provides reliable protection for medical devices against electrical transients.
  3. Consumer Electronics: Used in consumer electronics to safeguard against power surges and spikes.

Alternative Parts: While specific alternative parts may vary based on application requirements, some alternatives include: - Würth Elektronik's other TVS varistor models with similar specifications. - Other manufacturers' TVS varistors with comparable characteristics (e.g., Littelfuse, ON Semiconductor).

Embedded Modules: This component is commonly used in various embedded modules designed for circuit protection: - Industrial control systems - Automotive control units - Telecommunications equipment modules

In summary, the Würth Elektronik part number 820422711 is a reliable and efficient TVS varistor suitable for a wide range of applications requiring robust transient voltage protection. Its high clamping voltage, low capacitance, and compliance with RoHS3 regulations make it an excellent choice for ensuring the reliability and integrity of electronic circuits in various industries.

The three parts on the right have similar specifications to Würth Elektronik & 820422711.
820422711 Relevant information

Hot Sale
Related Categories
Similar Products
Popular Search
Related Products
The following parts include "820422711" in Würth Elektronik 820422711.
  • Part Number
  • Manufacturer
  • Package
  • Description