ZETTLER AZ974-1C-12D
ZETTLER AZ974-1C-12D
feed

ZETTLER AZ974-1C-12D

Manufacturer No:

AZ974-1C-12D

Manufacturer:

ZETTLER

Utmel No:

2818-AZ974-1C-12D

Package:

12-WFDFN Exposed Pad

ECAD Model:

Description:

40AMP Mini-ISO Automotive Relay 12VDC coil SPDT

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
AZ974-1C-12D information

Specifications
ZETTLER AZ974-1C-12D technical specifications, attributes, parameters and parts with similar specifications to ZETTLER AZ974-1C-12D.
  • Type
    Parameter
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    12-WFDFN Exposed Pad
  • Supplier Device Package

    The parameter "Supplier Device Package" in electronic components refers to the physical packaging or housing of the component as provided by the supplier. It specifies the form factor, dimensions, and layout of the component, which are crucial for compatibility and integration into electronic circuits and systems. The supplier device package information typically includes details such as the package type (e.g., DIP, SOP, QFN), number of pins, pitch, and overall size, allowing engineers and designers to select the appropriate component for their specific application requirements. Understanding the supplier device package is essential for proper component selection, placement, and soldering during the manufacturing process to ensure optimal performance and reliability of the electronic system.

    12-DFN (3x2)
  • Weight
    31 g
  • Number of Terminals
    4
  • End Contact Material

    End Contact Material refers to the conductive material used at the termination points of electronic components, such as connectors or switches, where electrical connections are made. This material significantly impacts the component's performance, including its conductivity, corrosion resistance, and overall longevity. Common materials used for end contacts include gold, silver, nickel, and copper, chosen based on the specific application requirements and environmental conditions. The choice of end contact material is crucial for ensuring reliable and efficient electrical connections in electronic assemblies.

    Silver Tin Oxide
  • Coil Voltage-Nom
    12 V
  • Operating Temperature-Min
    -55 °C
  • Operating Temperature-Max
    125 °C
  • Rohs Code
    Yes
  • Manufacturer Part Number
    AZ974-1C-12D
  • Manufacturer
    American ZETTLER Inc
  • Part Life Cycle Code
    Active
  • Ihs Manufacturer
    AMERICAN ZETTLER INC
  • CoilResistance
    85 Ω
  • ElectricalLife
    100000 Cycle(s)
  • Risk Rank
    2.24
  • Manufacturer Series
    AZ974
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C ~ 125°C
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    --
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tape & Reel (TR)
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    compliant
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    LT3050
  • Current - Supply (Max)

    The parameter "Current - Supply (Max)" in electronic components refers to the maximum amount of current that a component can draw from a power supply for its operation. This parameter is critical for ensuring that the power supply can adequately meet the demands of the component without causing damage or malfunction. Exceeding this specified maximum current can lead to overheating, reduced performance, or failure of the component. It is essential to consider this value when designing or integrating components into electronic circuits to maintain reliability and functionality.

    5.2mA
  • Body Length or Diameter

    Body length or diameter in electronic components refers to the physical dimensions of a component's housing, typically measured in millimeters or inches. It indicates the size of the component that affects its fit within a circuit board or system. This parameter is crucial for ensuring compatibility with the design and mounting of electronic devices. It can impact heat dissipation, electrical performance, and overall assembly efficiency. Accurate measurement of body length or diameter is essential for proper component selection and placement in electronic applications.

    26.45 mm
  • Voltage - Input (Max)

    Voltage - Input (Max) is a parameter in electronic components that specifies the maximum voltage that can be safely applied to the input of the component without causing damage. This parameter is crucial for ensuring the proper functioning and longevity of the component. Exceeding the maximum input voltage can lead to electrical overstress, which may result in permanent damage or failure of the component. It is important to carefully adhere to the specified maximum input voltage to prevent any potential issues and maintain the reliability of the electronic system.

    45V
  • Output Type

    The "Output Type" parameter in electronic components refers to the type of signal or data that is produced by the component as an output. This parameter specifies the nature of the output signal, such as analog or digital, and can also include details about the voltage levels, current levels, frequency, and other characteristics of the output signal. Understanding the output type of a component is crucial for ensuring compatibility with other components in a circuit or system, as well as for determining how the output signal can be utilized or processed further. In summary, the output type parameter provides essential information about the nature of the signal that is generated by the electronic component as its output.

    Fixed
  • Contact Resistance

    Contact resistance refers to the resistance encountered at the point of contact between two conductive materials or components. It is a measure of how well the two materials make electrical contact with each other. High contact resistance can lead to voltage drops, power losses, and inefficient electrical connections. It is typically measured in ohms and is an important parameter to consider in electronic components such as connectors, switches, and relays. Lower contact resistance is desirable for ensuring reliable and efficient electrical connections in electronic circuits.

    100 mΩ
  • Insulation Resistance

    The measurement of insulation resistance is carried out by means of a megohmmeter – high resistance range ohmmeter. A general rule-of-thumb is 10 Megohm or more.

    100000000 Ω
  • Contact Current(DC)-Max

    Contact Current (DC) - Max is a parameter in electronic components that specifies the maximum amount of direct current (DC) that can safely flow through the contact or connection point without causing damage or failure. This parameter is crucial for ensuring the reliability and longevity of the component, as exceeding the maximum contact current rating can lead to overheating, arcing, or even permanent damage. Designers and engineers must carefully consider this specification when selecting components for a circuit to prevent potential issues and ensure proper functionality. It is important to adhere to the manufacturer's guidelines and specifications to avoid any potential risks associated with exceeding the maximum contact current rating.

    40 A
  • Contact Voltage(DC)-Max

    Contact Voltage(DC)-Max refers to the maximum allowable direct current voltage that can be applied across the contacts of an electronic component without causing permanent damage or failure. It indicates the threshold above which electrical breakdown may occur, potentially harming the component's functionality. This parameter is crucial for ensuring the reliability and safety of components in various applications, as exceeding this value can lead to insulation breakdown or overheating.

    75 V
  • Termination Type

    Termination Type in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It specifies how the component's leads or terminals are designed for soldering or mounting onto a PCB. Common termination types include through-hole, surface mount, and wire lead terminations. The termination type is an important consideration when selecting components for a circuit design, as it determines how the component will be physically connected within the circuit. Different termination types offer varying levels of durability, ease of assembly, and suitability for specific applications.

    QUICK CONNECT
  • Output Configuration

    Output Configuration in electronic components refers to the arrangement or setup of the output pins or terminals of a device. It defines how the output signals are structured and how they interact with external circuits or devices. The output configuration can determine the functionality and compatibility of the component in a circuit design. Common types of output configurations include single-ended, differential, open-drain, and push-pull configurations, each serving different purposes and applications in electronic systems. Understanding the output configuration of a component is crucial for proper integration and operation within a circuit.

    Positive
  • Current - Output

    Current - Output is a parameter in electronic components that refers to the maximum amount of current that can be delivered by the output of the component. It is a crucial specification as it determines the capability of the component to supply power to connected devices or circuits. The current output rating is typically specified in amperes (A) and is important for ensuring that the component can safely and effectively power the load it is connected to without overheating or failing. Designers and engineers must consider the current output rating when selecting components to ensure compatibility and reliable operation of the overall system.

    100mA
  • Control Features

    Control features in electronic components refer to specific functionalities or characteristics that allow users to manage and regulate the operation of the component. These features are designed to provide users with control over various aspects of the component's performance, such as adjusting settings, monitoring parameters, or enabling specific modes of operation. Control features can include options for input/output configurations, power management, communication protocols, and other settings that help users customize and optimize the component's behavior according to their requirements. Overall, control features play a crucial role in enhancing the flexibility, usability, and performance of electronic components in various applications.

    Current Limit, Enable, Soft Start
  • Voltage - Output (Min/Fixed)

    Voltage - Output (Min/Fixed) refers to the minimum fixed output voltage level that an electronic component, such as a voltage regulator or power supply, is designed to provide under specified load conditions. This parameter ensures that the device consistently delivers a reliable voltage that meets the requirements of the connected circuits or components. It is critical for applications where stable and predictable voltage is necessary for proper operation.

    5V
  • Number of Regulators

    A regulator is a mechanism or device that controls something such as pressure, temperature, or fluid flow. The voltage regulator keeps the power level stabilized. A regulator is a mechanism or device that controls something such as pressure, temperature, or fluid flow.

    1
  • Protection Features

    Protection features in electronic components refer to the built-in mechanisms or functionalities designed to safeguard the component and the overall system from various external factors or internal faults. These features are crucial for ensuring the reliability, longevity, and safety of the electronic device. Common protection features include overvoltage protection, overcurrent protection, reverse polarity protection, thermal protection, and short-circuit protection. By activating these features when necessary, the electronic component can prevent damage, malfunctions, or hazards that may arise from abnormal operating conditions or unforeseen events. Overall, protection features play a vital role in enhancing the robustness and resilience of electronic components in diverse applications.

    Over Current, Over Temperature, Reverse Polarity
  • Current - Quiescent (Iq)

    The parameter "Current - Quiescent (Iq)" in electronic components refers to the amount of current consumed by a device when it is in a quiescent or idle state, meaning when it is not actively performing any tasks or operations. This parameter is important because it represents the baseline power consumption of the device even when it is not actively being used. A lower quiescent current (Iq) value is desirable as it indicates that the device is more energy-efficient and will consume less power when not in use, which can help extend battery life in portable devices and reduce overall power consumption in electronic systems. Designers often pay close attention to the quiescent current specification when selecting components for low-power applications or battery-operated devices.

    90µA
  • Voltage Dropout (Max)

    Voltage Dropout (Max) refers to the minimum voltage difference between the input and output of a voltage regulator or linear power supply needed to maintain proper regulation. It indicates the maximum allowable voltage drop across the device for it to function effectively without dropout. If the input voltage falls below this threshold, the output voltage may drop below the specified level, leading to potential operational issues for connected components. This parameter is critical for ensuring stable and reliable power delivery in electronic circuits.

    0.55V @ 100mA
  • PSRR

    PSRR stands for Power Supply Rejection Ratio. It is a measure of how well a device, such as an amplifier or a voltage regulator, can reject variations in the power supply voltage. A high PSRR value indicates that the device is able to maintain its performance even when the power supply voltage fluctuates. This parameter is important in ensuring stable and reliable operation of electronic components, especially in applications where the power supply voltage may not be perfectly regulated. A good PSRR helps to minimize noise and interference in the output signal of the device.

    66dB (120Hz)
  • Relay Type

    In electronic components, the parameter "Relay Type" refers to the specific classification or categorization of a relay based on its design, functionality, and application. Relays are electromechanical devices that are used to control the switching of circuits by opening or closing contacts in response to an electrical signal. The relay type typically indicates the specific characteristics of the relay, such as its switching mechanism (e.g., electromagnetic, solid-state), contact configuration (e.g., SPST, DPDT), operating voltage, current rating, and intended use (e.g., power relays, signal relays, automotive relays). Understanding the relay type is important for selecting the right relay for a particular application to ensure proper functionality and reliability.

    POWER/SIGNAL RELAY
  • Operate Time

    The time interval between the instant of the occurrence of a specified input condition to a system and the instant of completion of a specified operation.

    10 ms
  • Release Time

    In telecommunication, release time is the time interval for a circuit to respond when an enabling signal is discontinued

    10 ms
  • Contact (DC) Max Rating R Load

    Contact (DC) Max Rating R Load refers to the maximum direct current (DC) load that an electronic component, typically a relay or switch, can handle without risk of damage or failure. This rating indicates the highest permissible current that can pass through the contacts while maintaining reliable operation. It is crucial for ensuring the safety and longevity of the component in circuit applications that involve direct current. Exceeding this rating can lead to overheating, arc formation, or contact welding.

  • Voltage - Output (Max)

    Voltage - Output (Max) is a parameter that specifies the maximum voltage level that can be delivered by an electronic component, such as an integrated circuit or a power supply. It indicates the highest voltage that the component is designed to provide at its output terminal under normal operating conditions. This parameter is crucial for determining the compatibility of the component with other parts of the circuit and ensuring that the voltage requirements are met for proper functionality. Designers and engineers use this specification to ensure that the component can safely deliver the required voltage without exceeding its maximum output capability.

    --
  • Contact/Output Supply Type

    Contact/Output Supply Type is a parameter used to describe the type of connection or output supply required for an electronic component to function properly. This parameter specifies the specific type of contact or supply needed for the component to receive power or transmit signals. It can include details such as the number of pins, voltage levels, current requirements, and communication protocols. Understanding the Contact/Output Supply Type is crucial for selecting compatible components and ensuring proper functionality within an electronic system.

    DC
  • Coil/Input Supply Type

    Coil/Input Supply Type refers to the voltage and current specifications required to operate the coil in electromagnetic components such as relays and solenoids. This parameter indicates whether the component is designed to operate with AC or DC voltage sources and specifies the nominal voltage level for optimal performance. Understanding the Coil/Input Supply Type is essential for ensuring proper operation and compatibility with circuit designs.

    DC
  • Dielectric Strength Between Open Contacts

    The parameter "Dielectric Strength Between Open Contacts" in electronic components refers to the maximum voltage that can be applied across open contacts without causing electrical breakdown or arcing. It is a measure of the insulation capability of the material between the contacts. When the dielectric strength is exceeded, the insulating material may break down, leading to a short circuit or other electrical issues. This parameter is important in ensuring the reliability and safety of electronic components, especially in high-voltage applications where maintaining proper insulation is critical. Manufacturers provide dielectric strength specifications to help designers and engineers select components that can withstand the required voltage levels without failure.

    500 Vrms
  • Input Switching Control Type

    Input Switching Control Type refers to the method or mechanism used to control the switching of inputs in electronic components such as switches, relays, or multiplexers. This parameter determines how the selection of different input channels is managed within the component. Common types of input switching control include manual control, where a user physically selects the input channel, and automatic control, where the switching is done based on predetermined criteria or signals. The choice of input switching control type can impact the functionality, flexibility, and ease of use of the electronic component in various applications.

    Random
  • Dielectric Strength Between Coil and Contacts

    The parameter "Dielectric Strength Between Coil and Contacts" in electronic components refers to the maximum voltage that can be applied between the coil and the contacts without causing electrical breakdown or insulation failure. It is a critical specification that indicates the insulation capability of the component and its ability to withstand high voltage levels. A higher dielectric strength value indicates better insulation properties and increased reliability in preventing electrical arcing or short circuits between the coil and contacts. This parameter is important in ensuring the safe and reliable operation of the electronic component in various applications where high voltages may be present.

    500 Vrms
  • Relay Function

    In electronic components, the term "Relay Function" refers to the capability of a relay to control the flow of electrical current between two or more circuits. Relays are electromechanical devices that use an electromagnet to mechanically switch electrical contacts, allowing them to open or close a circuit. The relay function is essential for applications where there is a need to isolate or control the flow of electrical signals, such as in automation systems, power distribution, and telecommunications. By activating or deactivating the relay, users can control the operation of connected devices or systems, making relays a versatile component in various electronic and electrical applications.

    SPDT
  • Coil Voltage(DC)-Max

    Coil Voltage(DC)-Max refers to the maximum direct current voltage that can be applied to the coil of an electromagnetic component, such as a relay or solenoid. This parameter is critical to ensure the safe and reliable operation of the component, as exceeding this voltage can cause overheating, insulation breakdown, or damage to the coil. It is important for designers to consider this value when integrating such components into electronic circuits to prevent failure and ensure proper functionality. Proper adherence to the Coil Voltage(DC)-Max specification helps maintain the longevity and performance of the device.

    20.2 V
  • Relay Form

    In electronic components, a relay is an electromechanical device that is used to control the flow of electricity in a circuit. A relay form refers to the physical configuration or layout of the relay, which can vary depending on the specific application and requirements. The form factor of a relay can include the number of pins, the size and shape of the casing, and the arrangement of the internal components. Different relay forms are designed to accommodate various voltage and current ratings, switching speeds, and environmental conditions. It is important to select the appropriate relay form to ensure compatibility and optimal performance in a given electronic system.

    1 FORM C
  • Coil Operate Voltage(DC)

    Coil Operate Voltage (DC) refers to the direct current voltage level required to energize the coil of an electromagnetic component, such as a relay or solenoid. This voltage is essential for activating the component, allowing it to perform its intended function. If the applied voltage is below the specified coil operate voltage, the component may not engage properly or may fail to operate altogether. Conversely, applying a voltage significantly higher than the rated value may result in overheating or damage to the coil.

    7.8 V
  • Body Height

    In electronic components, "Body Height" refers to the vertical dimension of the component's physical body or package. It is the measurement from the bottom of the component to the top, excluding any leads or terminals. Body Height is an important parameter to consider when designing circuit boards or enclosures to ensure proper fit and clearance. It is typically specified in datasheets or technical drawings provided by the component manufacturer. Understanding the Body Height of electronic components is crucial for proper placement and integration within a circuit or system.

    24 mm
0 Similar Products Remaining