Allegro MicroSystems A5985GETTR-T
Allegro MicroSystems A5985GETTR-T
feed

Allegro MicroSystems A5985GETTR-T

Motor Drivers Motor Drivers

Manufacturer No:

A5985GETTR-T

Utmel No:

97-A5985GETTR-T

Package:

28-VFQFN Exposed Pad

Datasheet:

A5985GETTR-T

ECAD Model:

Description:

5mm mm Motor Drivers 28 5mm mm

Quantity:

Unit Price: $3.968714

Ext Price: $3.97

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 6000

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $3.968714

    $3.97

  • 10

    $3.744070

    $37.44

  • 100

    $3.532141

    $353.21

  • 500

    $3.332209

    $1,666.10

  • 1000

    $3.143593

    $3,143.59

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
A5985GETTR-T information

Specifications
Documents & Media
Product Details
Allegro MicroSystems A5985GETTR-T technical specifications, attributes, parameters and parts with similar specifications to Allegro MicroSystems A5985GETTR-T.
  • Type
    Parameter
  • Factory Lead Time
    8 Weeks
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    28-VFQFN Exposed Pad
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    YES
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~150°C TJ
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Cut Tape (CT)
  • Published
    2016
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    2 (1 Year)
  • Number of Terminations
    28
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Matte Tin (Sn)
  • Applications

    The parameter "Applications" in electronic components refers to the specific uses or functions for which a component is designed. It encompasses various fields such as consumer electronics, industrial automation, telecommunications, automotive, and medical devices. Understanding the applications helps in selecting the right components for a particular design based on performance, reliability, and compatibility requirements. This parameter also guides manufacturers in targeting their products to relevant markets and customer needs.

    General Purpose
  • HTS Code

    HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.

    8542.39.00.01
  • Voltage - Supply

    Voltage - Supply refers to the range of voltage levels that an electronic component or circuit is designed to operate with. It indicates the minimum and maximum supply voltage that can be applied for the device to function properly. Providing supply voltages outside this range can lead to malfunction, damage, or reduced performance. This parameter is critical for ensuring compatibility between different components in a circuit.

    8V~40V
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    QUAD
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    NO LEAD
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    NOT SPECIFIED
  • Terminal Pitch

    The center distance from one pole to the next.

    0.5mm
  • Time@Peak Reflow Temperature-Max (s)

    Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.

    NOT SPECIFIED
  • JESD-30 Code

    JESD-30 Code refers to a standardized descriptive designation system established by JEDEC for semiconductor-device packages. This system provides a systematic method for generating designators that convey essential information about the package's physical characteristics, such as size and shape, which aids in component identification and selection. By using JESD-30 codes, manufacturers and engineers can ensure consistency and clarity in the specification of semiconductor packages across various applications and industries.

    S-XQCC-N28
  • Function

    The parameter "Function" in electronic components refers to the specific role or purpose that the component serves within an electronic circuit. It defines how the component interacts with other elements, influences the flow of electrical signals, and contributes to the overall behavior of the system. Functions can include amplification, signal processing, switching, filtering, and energy storage, among others. Understanding the function of each component is essential for designing effective and efficient electronic systems.

    Driver - Fully Integrated, Control and Power Stage
  • Supply Voltage-Max (Vsup)

    The parameter "Supply Voltage-Max (Vsup)" in electronic components refers to the maximum voltage that can be safely applied to the component without causing damage. It is an important specification to consider when designing or using electronic circuits to ensure the component operates within its safe operating limits. Exceeding the maximum supply voltage can lead to overheating, component failure, or even permanent damage. It is crucial to adhere to the specified maximum supply voltage to ensure the reliable and safe operation of the electronic component.

    40V
  • Supply Voltage-Min (Vsup)

    The parameter "Supply Voltage-Min (Vsup)" in electronic components refers to the minimum voltage level required for the component to operate within its specified performance range. This parameter indicates the lowest voltage that can be safely applied to the component without risking damage or malfunction. It is crucial to ensure that the supply voltage provided to the component meets or exceeds this minimum value to ensure proper functionality and reliability. Failure to adhere to the specified minimum supply voltage may result in erratic behavior, reduced performance, or even permanent damage to the component.

    8V
  • Interface

    In electronic components, the term "Interface" refers to the point at which two different systems, devices, or components connect and interact with each other. It can involve physical connections such as ports, connectors, or cables, as well as communication protocols and standards that facilitate the exchange of data or signals between the connected entities. The interface serves as a bridge that enables seamless communication and interoperability between different parts of a system or between different systems altogether. Designing a reliable and efficient interface is crucial in ensuring proper functionality and performance of electronic components and systems.

    Logic
  • Analog IC - Other Type

    Analog IC - Other Type is a parameter used to categorize electronic components that are integrated circuits (ICs) designed for analog signal processing but do not fall into more specific subcategories such as amplifiers, comparators, or voltage regulators. These ICs may include specialized analog functions such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), voltage references, or signal conditioning circuits. They are typically used in various applications where precise analog signal processing is required, such as in audio equipment, instrumentation, communication systems, and industrial control systems. Manufacturers provide detailed specifications for these components to help engineers select the most suitable IC for their specific design requirements.

    STEPPER MOTOR CONTROLLER
  • Output Configuration

    Output Configuration in electronic components refers to the arrangement or setup of the output pins or terminals of a device. It defines how the output signals are structured and how they interact with external circuits or devices. The output configuration can determine the functionality and compatibility of the component in a circuit design. Common types of output configurations include single-ended, differential, open-drain, and push-pull configurations, each serving different purposes and applications in electronic systems. Understanding the output configuration of a component is crucial for proper integration and operation within a circuit.

    Half Bridge (4)
  • Voltage - Load

    Voltage - Load refers to the voltage across a load component in an electronic circuit when it is connected and operational. It represents the electrical potential difference that drives current through the load, which can be a resistor, motor, or other devices that consume electrical power. The voltage - load relationship is crucial for determining how much power the load will utilize and how it will affect the overall circuit performance. Properly managing voltage - load is essential for ensuring devices operate efficiently and safely within their specified limits.

    8V~40V
  • Motor Type - Stepper

    Motor Type - Stepper refers to a type of electromechanical device that converts electrical pulses into discrete mechanical movements. Stepper motors move in fixed angular increments or steps, allowing for precise control of position and speed. They are commonly used in applications requiring accurate positioning, such as 3D printers, CNC machines, and robotics. Stepper motors typically operate by energizing coils in a specific sequence, creating a magnetic field that moves the rotor in defined steps.

    Bipolar
  • Step Resolution

    Servo motor resolution is determined by feedback device of motor. I.e. 1000 PPR (pulses per revolution) quadrature encoder yields 1/4000 revolution resolution because 1000 PPR equals 4000 counts per revolution after standard 4X decoding.

    1 ~ 1/32
  • Length
    5mm
  • Height Seated (Max)

    Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.

    1mm
  • Width
    5mm
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Allegro MicroSystems A5985GETTR-T.

Product Description: Allegro MicroSystems A5985GETTR-T

Description

The Allegro MicroSystems A5985GETTR-T is a fully integrated stepper motor driver IC designed to provide efficient and reliable control over bipolar stepper motors. This surface-mount device (SMD) is part of Allegro's extensive lineup of motor drivers and controllers, catering to a wide range of applications requiring precise motor control. The A5985GETTR-T operates within a broad temperature range of -40°C to 150°C, making it suitable for various industrial and commercial environments.

Features

  • Integrated Driver: The A5985GETTR-T features a fully integrated driver with both control and power stages, simplifying the design process by eliminating the need for external components.
  • Half Bridge Configuration: It supports a half-bridge output configuration, providing four output channels that can be configured to drive bipolar stepper motors.
  • High Resolution: The IC offers a step resolution of 1 to 1/32, allowing for precise control over motor movements.
  • Wide Operating Voltage: The device can operate with supply voltages ranging from 8V to 40V, making it versatile for different power supply conditions.
  • RoHS Compliant: The A5985GETTR-T is compliant with RoHS3 standards, ensuring environmental sustainability.
  • Surface Mount Package: Available in a 28-VFQFN exposed pad package, this IC is optimized for surface mount technology (SMT) applications.

Applications

  1. General Purpose Motor Control
  2. The A5985GETTR-T is ideal for general-purpose motor control applications where high precision and reliability are required. Its wide operating voltage range and robust temperature tolerance make it suitable for various industrial settings.

  3. Stepper Motor Control

  4. Specifically designed to control bipolar stepper motors, this IC is perfect for applications requiring precise positioning and movement control.

  5. Automotive and Industrial Automation

  6. Its ability to operate within a broad temperature range makes it suitable for use in automotive systems as well as industrial automation equipment.

  7. Robotics and Mechatronics

  8. The high resolution and integrated design make it an excellent choice for robotics and mechatronics projects where precise motor control is crucial.

Alternative Parts

If the A5985GETTR-T is not available or if you need alternative solutions, consider the following parts from Allegro MicroSystems: - A5985GETTR-T is part of Allegro's extensive lineup of stepper motor controllers. Other similar parts include: - A5985GETTR-T (same part number) - Other stepper motor controllers from Allegro MicroSystems like A5985GETTR-T variants or similar models.

Embedded Modules

The A5985GETTR-T is commonly used in various embedded systems due to its compact size and high functionality: - Embedded Systems: This IC can be integrated into embedded systems requiring motor control functionality. - Microcontroller-Based Systems: It pairs well with microcontrollers from various manufacturers like ARM, Intel, or STMicroelectronics. - Industrial Control Systems: Used in industrial control systems where precise motor control is necessary for efficient operation.

In summary, the Allegro MicroSystems A5985GETTR-T is a reliable and versatile stepper motor driver IC designed for a wide range of applications requiring precise motor control. Its robust features, including a fully integrated design, high resolution, and wide operating voltage range, make it an excellent choice for both industrial and commercial environments.