Amphenol ICC (FCI) 8655MH3701LF
Amphenol ICC (FCI) 8655MH3701LF
feed

Amphenol ICC (FCI) 8655MH3701LF

Manufacturer No:

8655MH3701LF

Manufacturer:

Amphenol ICC (FCI)

Utmel No:

143-8655MH3701LF

Package:

Metal

ECAD Model:

Description:

D-Sub Backshells 37P STRT EXIT METAL HOOD

Quantity:

Unit Price: $10.211463

Ext Price: $10.21

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 11760

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $10.211463

    $10.21

  • 10

    $9.633456

    $96.33

  • 100

    $9.088166

    $908.82

  • 500

    $8.573741

    $4,286.87

  • 1000

    $8.088435

    $8,088.44

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
8655MH3701LF information

Specifications
Amphenol ICC (FCI) 8655MH3701LF technical specifications, attributes, parameters and parts with similar specifications to Amphenol ICC (FCI) 8655MH3701LF.
  • Type
    Parameter
  • Factory Lead Time
    11 Weeks
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    Metal
  • Material

    In electronic components, the parameter "Material" refers to the substance or material used in the construction of the component. The choice of material is crucial as it directly impacts the component's performance, durability, and other characteristics. Different materials have varying properties such as conductivity, resistance to heat, corrosion resistance, and mechanical strength, which determine how the component functions in a circuit. Common materials used in electronic components include metals like copper and aluminum, semiconductors like silicon, insulators like ceramics and plastics, and various alloys. Selecting the appropriate material is essential for designing reliable and efficient electronic components.

    Zinc Die Cast
  • Cable Types
    Round
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Bulk
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Positions
    37
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    125°C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    -55°C
  • Color
    Silver
  • MIL Conformance

    MIL Conformance refers to the compliance of electronic components with military standards set by the Department of Defense. These standards define rigorous requirements for reliability, performance, and durability under extreme conditions. Components that meet MIL Conformance are often used in defense, aerospace, and other critical applications where failure is not an option. Adherence to these standards ensures that the components can withstand harsh environments, such as extreme temperatures, vibrations, and humidity.

    NO
  • DIN Conformance

    DIN Conformance refers to the compliance of an electronic component with the standards set by the Deutsches Institut für Normung (DIN), which is the German Institute for Standardization. DIN standards cover a wide range of technical specifications and requirements for various products, including electronic components. When a component is labeled as DIN-conformant, it means that it meets the specific criteria outlined by DIN for factors such as dimensions, materials, performance, and safety. Ensuring DIN conformance helps to guarantee interoperability, quality, and reliability of electronic components in various applications and industries. Manufacturers often adhere to DIN standards to demonstrate the quality and reliability of their products to customers and to ensure compatibility with other DIN-compliant devices.

    NO
  • IEC Conformance

    IEC Conformance refers to the compliance of electronic components with standards set by the International Electrotechnical Commission (IEC). These standards ensure that the components meet specific safety, performance, and interoperability criteria. Adhering to IEC conformance helps manufacturers produce reliable and compatible products, facilitating international trade and promoting consumer safety. Components that conform to IEC standards are often preferred in global markets due to their quality assurance and regulatory acceptance.

    NO
  • Orientation

    In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.

    Straight
  • Shielding

    Shielding in electronic components refers to the practice of enclosing or surrounding sensitive electronic circuits or components with a conductive material to protect them from electromagnetic interference (EMI) or radio frequency interference (RFI). The shielding material acts as a barrier that blocks or absorbs unwanted electromagnetic signals, preventing them from affecting the performance of the electronic device. Shielding can be achieved using materials such as metal enclosures, conductive coatings, or shielding tapes. Proper shielding is essential in electronic design to ensure the reliable operation of electronic devices in environments where electromagnetic interference is present.

    Shielded
  • Depth

    In electronic components, "Depth" typically refers to the measurement of the distance from the front to the back of the component. It is an important parameter to consider when designing or selecting components for a project, as it determines how much space the component will occupy within a circuit or device. The depth of a component can impact the overall size and layout of the circuit board or enclosure in which it will be installed. It is usually specified in millimeters or inches and is crucial for ensuring proper fit and functionality within the intended application.

    56mm
  • Plating

    In the context of electronic components, "Plating" refers to a process of depositing a thin layer of metal onto a substrate material. This plating is often used to enhance the component's performance, durability, and conductivity. The plating material can vary depending on the specific requirements of the component, with common choices including gold, silver, tin, and nickel. Plating can also be used for corrosion resistance, solderability, and to improve the overall appearance of the component. Overall, plating plays a crucial role in ensuring the reliability and functionality of electronic components in various applications.

    Nickel
  • Connector Support Type

    Connector Support Type refers to the specific design or configuration of a connector that is used to support and secure electronic components or devices. This parameter describes the physical characteristics and features of the connector that enable it to effectively connect, hold, and provide stability to the components it is designed for. The support type may include factors such as the shape, size, material, mounting method, and locking mechanism of the connector, all of which contribute to its ability to securely hold the components in place and maintain a reliable electrical connection. Understanding the connector support type is important for selecting the appropriate connector that will ensure proper functionality and durability of the electronic system.

    CONNECTOR ACCESSORY
  • Accessory Type

    Accessory Type in electronic components refers to additional items or attachments that enhance the functionality or usability of primary components. These can include connectors, adapters, mounting hardware, and protective casings. Accessory Types are essential for ensuring compatibility and achieving optimal performance in electronic systems.

    Two Piece Backshell
  • Cable Exit

    Cable exit refers to the design feature of electronic components that dictates how cables or wires are routed out of the device. It encompasses aspects such as the location, orientation, and type of exit points for cables. Proper cable exit design is crucial for ensuring efficient space utilization, ease of installation, and minimizing interference or damage to the wires during operation. It can also impact thermal management and overall aesthetic considerations of the electronic assembly.

    180°
  • Assembly Item Name

    In the context of electronic components, the parameter "Assembly Item Name" typically refers to the specific name or identifier assigned to a particular electronic component within an assembly or system. This name helps to uniquely identify the component and distinguish it from others in the assembly. It is often used in documentation, inventory management, and during the assembly process to ensure accurate identification and tracking of components. The Assembly Item Name may include information such as the manufacturer's part number, a specific model or version designation, or any other relevant details that help identify the component within the assembly.

    HOOD
  • Hardware

    In electronic components, the term "Hardware" typically refers to physical components or parts of a device that can be seen and touched. This includes items such as screws, bolts, nuts, washers, brackets, and other mechanical parts used to assemble and secure electronic components within a system. Hardware is essential for providing structural support, connecting different components together, and ensuring the overall functionality and reliability of the electronic device. It is important to select the appropriate hardware components that are compatible with the electronic components being used to ensure proper assembly and operation of the device.

    Assembly Hardware, Cable Clamp
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    Mating Screws 4-40
  • Length
    72.95mm
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    RoHS Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining
8655MH3701LF Relevant information

Hot Sale
Related Categories
Similar Products
Related Products
Same Manufacturer Products
The following parts include "8655MH3701LF" in Amphenol ICC (FCI) 8655MH3701LF.
  • Part Number
  • Manufacturer
  • Package
  • Description