pid_39981583_lt1580cq23pbf-analog-devices-datasheet-10695126.pdf Outline Dimensions_1
pid_39981583_lt1580cq23pbf-analog-devices-datasheet-10695126.pdf Outline Dimensions_1
pid_39981583_lt1580cq23pbf-analog-devices-datasheet-10695126.pdf Outline Dimensions_2
pid_39981583_lt1580cq23pbf-analog-devices-datasheet-10695126.pdf Outline Dimensions_3
feed

Analog Devices LT1580CQ#PBF

2 Terminations Converter, Intel Pentium® 1.25V ~ 4.65V Specialized Voltage Regulator 5 Pins

Manufacturer No:

LT1580CQ#PBF

Manufacturer:

Analog Devices

Utmel No:

153-LT1580CQ#PBF

Package:

Axial

ECAD Model:

Description:

Converter, Intel Pentium® 1.25V ~ 4.65V 260 Cel SINGLE Specialized Voltage Regulator -65°C ~ 225°C 5 Pins 2 Terminations Axial

Quantity:

Unit Price: $11.514169

Ext Price: $11.51

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 20000

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $11.514169

    $11.51

  • 10

    $10.862424

    $108.62

  • 100

    $10.247569

    $1,024.76

  • 500

    $9.667518

    $4,833.76

  • 1000

    $9.120300

    $9,120.30

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
LT1580CQ#PBF information

Specifications
Documents & Media
Product Details
Analog Devices LT1580CQ#PBF technical specifications, attributes, parameters and parts with similar specifications to Analog Devices LT1580CQ#PBF.
  • Type
    Parameter
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    Axial
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    YES
  • Supplier Device Package

    The parameter "Supplier Device Package" in electronic components refers to the physical packaging or housing of the component as provided by the supplier. It specifies the form factor, dimensions, and layout of the component, which are crucial for compatibility and integration into electronic circuits and systems. The supplier device package information typically includes details such as the package type (e.g., DIP, SOP, QFN), number of pins, pitch, and overall size, allowing engineers and designers to select the appropriate component for their specific application requirements. Understanding the supplier device package is essential for proper component selection, placement, and soldering during the manufacturing process to ensure optimal performance and reliability of the electronic system.

    Axial
  • Number of Terminals
    5
  • Package
    Tube
  • Base Product Number

    "Base Product Number" (BPN) refers to the fundamental identifier assigned to a component by the manufacturer. This number is used to identify a specific product family or series of components that share common features, characteristics, or functionality. The BPN is usually part of a larger part number or order code that includes additional information, such as variations in packaging, tolerance, voltage ratings, and other specifications.

    LT1580
  • Mfr
    Analog Devices Inc.
  • Product Status
    Active
  • Voltage-Input
    1.79V ~ 6V
  • Dropout Voltage - Max
    1.35 V
  • PSRR / Ripple Rejection - Typ
    80 dB
  • Maximum Operating Temperature

    the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    + 150 C
  • Unit Weight
    0.130443 oz
  • Minimum Operating Temperature
    0 C
  • Factory Pack QuantityFactory Pack Quantity
    50
  • Mounting Styles
    SMD/SMT
  • Manufacturer
    Analog Devices Inc.
  • Brand
    Analog Devices
  • Input Voltage-Max
    6 V
  • Input Voltage-Min
    1.79 V
  • RoHS
    Details
  • Package Description
    LEAD FREE, PLASTIC, D2PAK-5
  • Package Style
    SMALL OUTLINE
  • Moisture Sensitivity Levels
    1
  • Package Body Material
    PLASTIC/EPOXY
  • Manufacturer Package Code
    05-08-1461
  • Reflow Temperature-Max (s)
    30
  • Rohs Code
    No
  • Manufacturer Part Number
    LT1580CQ#PBF
  • Package Code
    TO-263
  • Package Shape
    RECTANGULAR
  • Part Life Cycle Code
    Active
  • Ihs Manufacturer
    ANALOG DEVICES INC
  • Risk Rank
    1.83
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Bulk
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    CP
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -65°C ~ 225°C
  • Size / Dimension

    In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.

    0.875 L x 0.375 W (22.22mm x 9.52mm)
  • Tolerance

    In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.

    ±10%
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    No
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Number of Terminations
    2
  • Temperature Coefficient

    The resistance-change factor per degree Celsius of temperature change is called the temperature coefficient of resistance. This factor is represented by the Greek lower-case letter “alpha” (α). A positive coefficient for a material means that its resistance increases with an increase in temperature.

    ±400ppm/°C
  • Type
    Positive Linear Regulator
  • Resistance

    Resistance is a fundamental property of electronic components that measures their opposition to the flow of electric current. It is denoted by the symbol "R" and is measured in ohms (Ω). Resistance is caused by the collisions of electrons with atoms in a material, which generates heat and reduces the flow of current. Components with higher resistance will impede the flow of current more than those with lower resistance. Resistance plays a crucial role in determining the behavior and functionality of electronic circuits, such as limiting current flow, voltage division, and controlling power dissipation.

    110 Ohms
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    MATTE TIN
  • Composition

    Parameter "Composition" in electronic components refers to the specific materials and substances used in the construction of the component. It encompasses the chemical and physical elements that make up the component, influencing its electrical, thermal, and mechanical properties. The composition can affect the performance, reliability, and durability of the component in various applications. Understanding the composition is essential for optimizing the design and functionality of electronic devices.

    Metal Oxide Film
  • Applications

    The parameter "Applications" in electronic components refers to the specific uses or functions for which a component is designed. It encompasses various fields such as consumer electronics, industrial automation, telecommunications, automotive, and medical devices. Understanding the applications helps in selecting the right components for a particular design based on performance, reliability, and compatibility requirements. This parameter also guides manufacturers in targeting their products to relevant markets and customer needs.

    Converter, Intel Pentium®
  • Power (Watts)

    The parameter "Power (Watts)" in electronic components refers to the amount of electrical energy consumed or dissipated by the component. It is a measure of how much energy the component can handle or generate. Power is typically measured in watts, which is a unit of power that indicates the rate at which energy is transferred. Understanding the power rating of electronic components is crucial for ensuring they operate within their specified limits to prevent overheating and potential damage. It is important to consider power requirements when designing circuits or selecting components to ensure proper functionality and reliability.

    5W
  • Subcategory
    PMIC - Power Management ICs
  • Technology

    In the context of electronic components, the parameter "Technology" refers to the specific manufacturing process and materials used to create the component. This includes the design, construction, and materials used in the production of the component. The technology used can greatly impact the performance, efficiency, and reliability of the electronic component. Different technologies may be used for different types of components, such as integrated circuits, resistors, capacitors, and more. Understanding the technology behind electronic components is important for selecting the right components for a particular application and ensuring optimal performance.

    BIPOLAR
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    SINGLE
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    GULL WING
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    260
  • Number of Functions
    1
  • Terminal Pitch

    The center distance from one pole to the next.

    1.7 mm
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    not_compliant
  • Pin Count

    a count of all of the component leads (or pins)

    5
  • JESD-30 Code

    JESD-30 Code refers to a standardized descriptive designation system established by JEDEC for semiconductor-device packages. This system provides a systematic method for generating designators that convey essential information about the package's physical characteristics, such as size and shape, which aids in component identification and selection. By using JESD-30 codes, manufacturers and engineers can ensure consistency and clarity in the specification of semiconductor packages across various applications and industries.

    R-PSSO-G5
  • Number of Outputs
    1
  • Qualification Status

    An indicator of formal certification of qualifications.

    Not Qualified
  • Output Voltage

    Output voltage is a crucial parameter in electronic components that refers to the voltage level produced by the component as a result of its operation. It represents the electrical potential difference between the output terminal of the component and a reference point, typically ground. The output voltage is a key factor in determining the performance and functionality of the component, as it dictates the level of voltage that will be delivered to the connected circuit or load. It is often specified in datasheets and technical specifications to ensure compatibility and proper functioning within a given system.

    Adjustable
  • Output Type

    The "Output Type" parameter in electronic components refers to the type of signal or data that is produced by the component as an output. This parameter specifies the nature of the output signal, such as analog or digital, and can also include details about the voltage levels, current levels, frequency, and other characteristics of the output signal. Understanding the output type of a component is crucial for ensuring compatibility with other components in a circuit or system, as well as for determining how the output signal can be utilized or processed further. In summary, the output type parameter provides essential information about the nature of the signal that is generated by the electronic component as its output.

    Adjustable
  • Brand Name
    Analog Devices Inc
  • Failure Rate

    the frequency with which an engineered system or component fails, expressed in failures per unit of time. It is usually denoted by the Greek letter λ (lambda) and is often used in reliability engineering.

    --
  • Polarity

    In electronic components, polarity refers to the orientation or direction in which the component must be connected in a circuit to function properly. Components such as diodes, capacitors, and LEDs have polarity markings to indicate which terminal should be connected to the positive or negative side of the circuit. Connecting a component with incorrect polarity can lead to malfunction or damage. It is important to pay attention to polarity markings and follow the manufacturer's instructions to ensure proper operation of electronic components.

    Positive
  • Operating Supply Current

    Operating Supply Current, also known as supply current or quiescent current, is a crucial parameter in electronic components that indicates the amount of current required for the device to operate under normal conditions. It represents the current drawn by the component from the power supply while it is functioning. This parameter is important for determining the power consumption of the component and is typically specified in datasheets to help designers calculate the overall power requirements of their circuits. Understanding the operating supply current is essential for ensuring proper functionality and efficiency of electronic systems.

    10 mA
  • Output Current

    The rated output current is the maximum load current that a power supply can provide at a specified ambient temperature. A power supply can never provide more current that it's rated output current unless there is a fault, such as short circuit at the load.

    7 A
  • Voltage - Output

    Voltage - Output is a parameter that refers to the electrical potential difference between the output terminal or pin of an electronic component and a reference point, typically ground. It indicates the level of voltage that the component is capable of providing at its output under specified operating conditions. This parameter is crucial in determining the performance and functionality of the component in a circuit, as it directly affects the signal or power being delivered to other components or devices connected to the output. Engineers and designers use the voltage output specification to ensure compatibility and proper functioning of the component within the overall system.

    1.25V ~ 4.65V
  • Seated Height-Max

    Seated Height-Max in electronic components refers to the maximum height at which a component can be comfortably installed or operated when a user is seated. It is particularly relevant in designs involving ergonomic considerations, where the placement of controls, displays, or other interfaces must accommodate users in seated positions. This parameter ensures accessibility and usability, preventing strain or discomfort during operation.

    4.877 mm
  • Dropout Voltage

    Dropout voltage is the input-to-output differential voltage at which the circuit ceases to regulate against further reductions in input voltage; this point occurs when the input voltage approaches the output voltage.

    540 mV
  • Product Type

    a group of products which fulfill a similar need for a market segment or market as a whole.

    LDO Voltage Regulators
  • Regulator Type

    In electronic components, the "Regulator Type" parameter refers to the specific type of voltage regulator used in a circuit. Voltage regulators are devices that maintain a constant output voltage regardless of changes in input voltage or load conditions. The regulator type can vary based on the design and functionality of the voltage regulator, such as linear regulators, switching regulators, or programmable regulators. Each type has its own advantages and limitations in terms of efficiency, cost, size, and performance characteristics. Selecting the appropriate regulator type is crucial to ensure stable and reliable operation of the electronic circuit.

    FIXED/ADJUSTABLE POSITIVE SINGLE OUTPUT LDO REGULATOR
  • Output Current1-Max

    Output Current1-Max refers to the maximum current output that a specific electronic component, such as a power supply or regulator, can deliver under standard operating conditions. It is a critical specification that indicates the highest level of current the device can provide to a load without risking damage or performance degradation. Exceeding this limit can lead to overheating, component failure, or reduced operational lifespan. This parameter is essential for ensuring compatibility with connected devices and for maintaining circuit stability.

    7 A
  • Dropout Voltage1-Max

    Dropout Voltage1-Max is a parameter used to describe the minimum input voltage required for a voltage regulator to maintain a stable output voltage. It represents the difference between the input voltage and the output voltage at which the regulator can no longer regulate the output voltage effectively. In other words, it is the maximum voltage drop that the regulator can tolerate while still providing the desired output voltage. This parameter is important for ensuring proper operation of the voltage regulator and preventing voltage fluctuations that could potentially damage connected electronic components.

    0.8 V
  • Operating Temperature TJ-Max

    The parameter "Operating Temperature TJ-Max" in electronic components refers to the maximum temperature at which the component can safely operate without risking damage or performance degradation. It is a critical specification that indicates the upper limit of temperature that the component can withstand during normal operation. Exceeding the TJ-Max can lead to overheating, reduced lifespan, and potential failure of the component. Designers and engineers must consider the TJ-Max when designing electronic systems to ensure proper thermal management and reliable operation under specified conditions.

    150 °C
  • Line Regulation

    Line regulation is the ability of a power supply to maintain a constant output voltage despite changes to the input voltage, with the output current drawn from the power supply remaining constant.

    1 mV
  • Load Regulation

    Load regulation is the capability to maintain a constant voltage (or current) level on the output channel of a power supply despite changes in the supply's load (such as a change in resistance value connected across the supply output).

    1 mV
  • Product

    In the context of electronic components, the parameter "Product" typically refers to the specific item or device being discussed or analyzed. It can refer to a physical electronic component such as a resistor, capacitor, transistor, or integrated circuit. The product parameter may also encompass more complex electronic devices like sensors, displays, microcontrollers, or communication modules.Understanding the product parameter is crucial in electronics as it helps identify the characteristics, specifications, and functionality of the component or device in question. This information is essential for selecting the right components for a circuit design, troubleshooting issues, or comparing different products for a particular application. Manufacturers often provide detailed product datasheets that outline key specifications, performance characteristics, and application guidelines to assist engineers and designers in utilizing the component effectively.

    Linear Regulators
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    Flame Proof, Safety
  • Product Category

    a particular group of related products.

    LDO Voltage Regulators
  • Height Seated (Max)

    Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.

    --
  • Height
    4.57 mm
  • Width
    8.89 mm
  • Length
    10.2235 mm
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Analog Devices LT1580CQ#PBF.

LT1580CQ#PBF Overview

A total of 1outputs are supported by this voltage regulator. The rectifier regulator is packaged in Axial to facilitate transportation. We are ready to ship in Bulk packages. An output voltage of 1.25V ~ 4.65V is provided by this power supply regulator. For easy adaptability, there is a universal mount Surface Mount. There are a number of applications targeted at Converter, Intel Pentium®. As a precaution, it is recommended to set the operating temperature to -65°C ~ 225°C to prevent malfunctions. There are 2terminals on the voltage regulator. Pinouts for the rectifier regulator begin at 5. The voltage controller plays an important role in the industry, as do other PMIC - Power Management ICs. Currently, the electrical regulator should output 7 A. In technical terms, it is referred to as a FIXED/ADJUSTABLE POSITIVE SINGLE OUTPUT LDO REGULATOR shunt regulator. A electronic component's series number is denoted by CP.

LT1580CQ#PBF Features

Widely used in Converter, Intel Pentium® applications
FIXED/ADJUSTABLE POSITIVE SINGLE OUTPUT LDO REGULATOR regulator

LT1580CQ#PBF Applications

There are a lot of Analog Devices
LT1580CQ#PBF Specialized Voltage Regulators applications.


  • GSM Base Station
  • LCD-TV/PDP-TV
  • Copier/Printer
  • Set-Top Box
  • DDR Vooo and Vπ Voltage Generation
  • PC Dual Power Supply
  • Server DDR Power
  • Desktop Computer
  • Graphics Cards
  • Cell Phones