pid_36056730_lt3645eud23trpbf-analog-devices-datasheet-10995015.pdf  Pinout Diagram_1
pid_36056730_lt3645eud23trpbf-analog-devices-datasheet-10995015.pdf  Pinout Diagram_1
pid_36056730_lt3645eud23trpbf-analog-devices-datasheet-10995015.pdf  Pinout Diagram_2
pid_36056730_lt3645eud23trpbf-analog-devices-datasheet-10995015.pdf Outline Dimensions_1
pid_36056730_lt3645eud23trpbf-analog-devices-datasheet-10995015.pdf Outline Dimensions_2
pid_36056730_lt3645eud23trpbf-analog-devices-datasheet-10995015.pdf Outline Dimensions_3
feed

Analog Devices LT3645EUD#TRPBF

KJB Series PMIC 16 Pin

Manufacturer No:

LT3645EUD#TRPBF

Manufacturer:

Analog Devices

Utmel No:

153-LT3645EUD#TRPBF

Package:

16-WFQFN Exposed Pad

ECAD Model:

Description:

Adjustable 0.5 mm PMIC KJB Series 16 Pin 16-WFQFN Exposed Pad

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
LT3645EUD#TRPBF information

Specifications
Documents & Media
Product Details
Analog Devices LT3645EUD#TRPBF technical specifications, attributes, parameters and parts with similar specifications to Analog Devices LT3645EUD#TRPBF.
  • Type
    Parameter
  • Lifecycle Status

    Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.

    Production (Last Updated: 1 month ago)
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Free Hanging (In-Line)
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    16-WFQFN Exposed Pad
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    YES
  • Mounting Feature

    a process by which the operating system makes files and directories on a storage device (such as hard drive, CD-ROM, or network share) available for users to access via the computer's file system.

    -
  • Number of Pins
    16
  • Contact Shape

    Contact shape in electronic components refers to the physical geometry of the interface where electrical connections are made. It plays a critical role in determining the quality and reliability of the connection, impacting factors such as resistance, current density, and heat dissipation. Various shapes, such as flat, cylindrical, or custom profiles, influence the contact area, enabling designers to optimize performance for specific applications. The contact shape also affects the mechanical stability of the connection, influencing wear and longevity.

    Circular
  • Shell Material

    The "Shell Material" parameter in electronic components refers to the material used to encase or cover the internal components of the device. This material is chosen based on various factors such as durability, heat resistance, electrical insulation properties, and environmental considerations. Common shell materials include plastics, metals, and ceramics, each offering different levels of protection and performance characteristics. The choice of shell material can impact the overall reliability, safety, and functionality of the electronic component in different operating conditions.

    Aluminum Alloy
  • Supplier Device Package

    The parameter "Supplier Device Package" in electronic components refers to the physical packaging or housing of the component as provided by the supplier. It specifies the form factor, dimensions, and layout of the component, which are crucial for compatibility and integration into electronic circuits and systems. The supplier device package information typically includes details such as the package type (e.g., DIP, SOP, QFN), number of pins, pitch, and overall size, allowing engineers and designers to select the appropriate component for their specific application requirements. Understanding the supplier device package is essential for proper component selection, placement, and soldering during the manufacturing process to ensure optimal performance and reliability of the electronic system.

    16-QFN (3x3)
  • Insert Material

    The parameter "Insert Material" in electronic components refers to the specific material used to create the insert portions of connectors or other components that facilitate assembly or enhance performance. This material is chosen for its electrical, thermal, and mechanical properties, which can influence the overall functionality and reliability of the component in its intended application. Common insert materials include plastics, ceramics, and metals, each selected based on the requirements of the environment in which the component will operate.

    Plastic
  • Number of Terminals
    16
  • Package
    Bulk
  • Base Product Number

    "Base Product Number" (BPN) refers to the fundamental identifier assigned to a component by the manufacturer. This number is used to identify a specific product family or series of components that share common features, characteristics, or functionality. The BPN is usually part of a larger part number or order code that includes additional information, such as variations in packaging, tolerance, voltage ratings, and other specifications.

    KJB6T
  • Contact Sizes
    22D
  • Mfr
    ITT Cannon, LLC
  • Product Status
    Active
  • Maximum Operating Temperature

    the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    + 125 C
  • Minimum Operating Temperature
    - 40 C
  • Factory Pack QuantityFactory Pack Quantity
    2500
  • Mounting Styles
    SMD/SMT
  • Manufacturer
    Analog Devices Inc.
  • Brand
    Analog Devices
  • Input Voltage-Max
    36 V
  • Input Voltage-Min
    3.6 V
  • RoHS
    Details
  • SwitchingFrequency
    750 kHz
  • Voltage-Output 1
    16 V
  • Manufacturer Lifecycle Status
    PRODUCTION (Last Updated: 1 month ago)
  • Package Description
    3 X 3 MM, LEAD FREE, PLASTIC, MO-220WEED-2, QFN-16
  • Package Style
    CHIP CARRIER, HEAT SINK/SLUG, VERY THIN PROFILE
  • Moisture Sensitivity Levels
    1
  • Package Body Material
    PLASTIC/EPOXY
  • Manufacturer Package Code
    05-08-1691
  • Reflow Temperature-Max (s)
    NOT SPECIFIED
  • Operating Temperature-Max
    125 °C
  • Rohs Code
    Yes
  • Manufacturer Part Number
    LT3645EUD#TRPBF
  • Package Code
    HVQCCN
  • Package Shape
    SQUARE
  • Part Life Cycle Code
    Active
  • Ihs Manufacturer
    ANALOG DEVICES INC
  • Risk Rank
    5.16
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -65°C ~ 175°C
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    KJB
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Reel
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    No
  • Connector Type

    Connector Type in electronic components refers to the specific design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the physical shape, size, and layout of the connector, as well as the number and arrangement of pins or contacts. Common connector types include USB, HDMI, RJ45, and D-sub connectors, each serving different purposes and applications. Understanding the connector type is crucial for ensuring compatibility and proper functionality when connecting electronic devices together.

    Plug Housing
  • Type
    For Male Pins
  • Number of Positions
    66
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Matte Tin (Sn)
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    125 °C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    -40 °C
  • Additional Feature

    Any Feature, including a modified Existing Feature, that is not an Existing Feature.

    ALSO OPERATES IN ADJUSTABLE MODE FROM 0.8 TO 8V, ALSO OPERATES AS LDO REGULATOR
  • Fastening Type

    There are 5 Main Types of Fastening Type: Screws, Nails, Bolts, Anchors, Rivets.

    Threaded
  • Subcategory
    PMIC - Power Management ICs
  • Contact Type

    Contact Type in electronic components refers to the specific design and configuration of the electrical contacts used to establish connections between components or devices. The contact type determines how the electrical signals are transmitted between the components, and it can vary based on factors such as the application requirements, signal type, and environmental conditions. Common contact types include pin contacts, socket contacts, surface mount contacts, and wire-to-board contacts. Understanding the contact type is crucial for ensuring proper connectivity and reliable performance in electronic systems.

    Crimp
  • Voltage - Supply

    Voltage - Supply refers to the range of voltage levels that an electronic component or circuit is designed to operate with. It indicates the minimum and maximum supply voltage that can be applied for the device to function properly. Providing supply voltages outside this range can lead to malfunction, damage, or reduced performance. This parameter is critical for ensuring compatibility between different components in a circuit.

    3.6V ~ 36V
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    QUAD
  • Orientation

    In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.

    B
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    NO LEAD
  • Shielding

    Shielding in electronic components refers to the practice of enclosing or surrounding sensitive electronic circuits or components with a conductive material to protect them from electromagnetic interference (EMI) or radio frequency interference (RFI). The shielding material acts as a barrier that blocks or absorbs unwanted electromagnetic signals, preventing them from affecting the performance of the electronic device. Shielding can be achieved using materials such as metal enclosures, conductive coatings, or shielding tapes. Proper shielding is essential in electronic design to ensure the reliable operation of electronic devices in environments where electromagnetic interference is present.

    Shielded
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    NOT SPECIFIED
  • Number of Functions
    1
  • Ingress Protection

    Ingress Protection rating (or just IP rating), is an international standard (IEC 60529) used to rate the degree of protection or sealing effectiveness in electrical enclosures against intrusion of objects, water, dust or accidental contact. It corresponds to the European standard EN 60529.

    Environment Resistant
  • Terminal Pitch

    The center distance from one pole to the next.

    0.5 mm
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    compliant
  • Shell Finish

    Shell Finish in electronic components refers to the surface treatment or coating applied to the outer shell or casing of the component. This finish is designed to provide protection against environmental factors such as moisture, dust, and corrosion, as well as to enhance the component's appearance. Common types of shell finishes include nickel plating, anodizing, powder coating, and epoxy resin coating. The choice of shell finish depends on the specific requirements of the component, such as the operating environment, durability needs, and aesthetic considerations.

    Cadmium over Electroless Nickel
  • Pin Count

    a count of all of the component leads (or pins)

    16
  • Shell Size - Insert

    The parameter "Shell Size - Insert" in electronic components refers to the physical size of the connector shell or housing that holds the insert or contact arrangement within the component. The shell size is typically specified by a numerical designation that corresponds to a specific size and configuration of the connector. This parameter is important for ensuring compatibility and proper fit between different components or devices that use the same type of connector. Manufacturers provide detailed specifications for shell size to help users select the appropriate connector for their specific application requirements.

    19-35
  • JESD-30 Code

    JESD-30 Code refers to a standardized descriptive designation system established by JEDEC for semiconductor-device packages. This system provides a systematic method for generating designators that convey essential information about the package's physical characteristics, such as size and shape, which aids in component identification and selection. By using JESD-30 codes, manufacturers and engineers can ensure consistency and clarity in the specification of semiconductor packages across various applications and industries.

    S-PQCC-N16
  • Number of Outputs
    2
  • Qualification Status

    An indicator of formal certification of qualifications.

    Not Qualified
  • Output Voltage

    Output voltage is a crucial parameter in electronic components that refers to the voltage level produced by the component as a result of its operation. It represents the electrical potential difference between the output terminal of the component and a reference point, typically ground. The output voltage is a key factor in determining the performance and functionality of the component, as it dictates the level of voltage that will be delivered to the connected circuit or load. It is often specified in datasheets and technical specifications to ensure compatibility and proper functioning within a given system.

    16 V
  • Housing Color

    Housing color in electronic components refers to the color of the protective casing or enclosure that surrounds the component. It can play a role in visual identification, aiding in easy recognition during assembly or maintenance. Additionally, the housing color may also have implications for heat dissipation, aesthetic considerations, or regulatory compliance depending on the application or industry standards.

    Olive Drab
  • Output Type

    The "Output Type" parameter in electronic components refers to the type of signal or data that is produced by the component as an output. This parameter specifies the nature of the output signal, such as analog or digital, and can also include details about the voltage levels, current levels, frequency, and other characteristics of the output signal. Understanding the output type of a component is crucial for ensuring compatibility with other components in a circuit or system, as well as for determining how the output signal can be utilized or processed further. In summary, the output type parameter provides essential information about the nature of the signal that is generated by the electronic component as its output.

    Adjustable
  • Brand Name
    Analog Devices Inc
  • Input Voltage-Nom

    Input Voltage-Nom refers to the nominal or rated input voltage that an electronic component or device is designed to operate within. This parameter specifies the voltage level at which the component is expected to function optimally and safely. It is important to ensure that the actual input voltage supplied to the component does not exceed this nominal value to prevent damage or malfunction. Manufacturers provide this specification to guide users in selecting the appropriate power supply or input voltage source for the component. It is a critical parameter to consider when designing or using electronic circuits to ensure reliable performance and longevity of the component.

    12 V
  • Temperature Grade

    Temperature grades represent a tire's resistance to heat and its ability to dissipate heat when tested under controlled laboratory test conditions.

    OTHER
  • Note
    Contacts Not Included
  • Max Supply Voltage

    In general, the absolute maximum common-mode voltage is VEE-0.3V and VCC+0.3V, but for products without a protection element at the VCC side, voltages up to the absolute maximum rated supply voltage (i.e. VEE+36V) can be supplied, regardless of supply voltage.

    36 V
  • Min Supply Voltage

    The minimum supply voltage (V min ) is explored for sequential logic circuits by statistically simulating the impact of within-die process variations and gate-dielectric soft breakdown on data retention and hold time.

    3.6 V
  • Analog IC - Other Type

    Analog IC - Other Type is a parameter used to categorize electronic components that are integrated circuits (ICs) designed for analog signal processing but do not fall into more specific subcategories such as amplifiers, comparators, or voltage regulators. These ICs may include specialized analog functions such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), voltage references, or signal conditioning circuits. They are typically used in various applications where precise analog signal processing is required, such as in audio equipment, instrumentation, communication systems, and industrial control systems. Manufacturers provide detailed specifications for these components to help engineers select the most suitable IC for their specific design requirements.

    SWITCHING REGULATOR
  • Operating Supply Current

    Operating Supply Current, also known as supply current or quiescent current, is a crucial parameter in electronic components that indicates the amount of current required for the device to operate under normal conditions. It represents the current drawn by the component from the power supply while it is functioning. This parameter is important for determining the power consumption of the component and is typically specified in datasheets to help designers calculate the overall power requirements of their circuits. Understanding the operating supply current is essential for ensuring proper functionality and efficiency of electronic systems.

    1.4 mA
  • Nominal Supply Current

    Nominal current is the same as the rated current. It is the current drawn by the motor while delivering rated mechanical output at its shaft.

    1.4 mA
  • Output Current

    The rated output current is the maximum load current that a power supply can provide at a specified ambient temperature. A power supply can never provide more current that it's rated output current unless there is a fault, such as short circuit at the load.

    500 mA
  • Shell Size, MIL

    The parameter "Shell Size, MIL" in electronic components refers to the physical size of the component's outer shell or housing, measured in thousandths of an inch (mil). It is a standardized measurement used to ensure compatibility and interchangeability of components within a specific series or family. The shell size typically includes dimensions such as diameter, length, and overall shape of the component, and is important for determining how the component will fit into a system or assembly. Manufacturers provide shell size information to help users select the appropriate components for their specific application requirements.

    -
  • Quiescent Current

    The quiescent current is defined as the current level in the amplifier when it is producing an output of zero.

    1.4 mA
  • Voltage - Output 2

    Voltage - Output 2 is a parameter that refers to the voltage level of the second output of an electronic component, such as a power supply or amplifier. This parameter indicates the voltage that is provided or generated by the second output of the component. It is important to consider this parameter when designing or using electronic circuits, as it determines the voltage level available for powering or driving other components in the system. Understanding the voltage output characteristics of electronic components is crucial for ensuring proper functionality and compatibility within a circuit or system.

    8 V
  • Topology

    In the context of electronic components, "topology" refers to the arrangement or configuration of the components within a circuit or system. It defines how the components are connected to each other and how signals flow between them. The choice of topology can significantly impact the performance, efficiency, and functionality of the electronic system. Common topologies include series, parallel, star, mesh, and hybrid configurations, each with its own advantages and limitations. Designers carefully select the appropriate topology based on the specific requirements of the circuit to achieve the desired performance and functionality.

    Step-Down (Buck) (1), Linear (LDO) (1)
  • Min Input Voltage

    The parameter "Min Input Voltage" in electronic components refers to the minimum voltage level that must be applied to the component for it to operate within its specified parameters. This value is crucial as providing a voltage below this minimum threshold may result in the component malfunctioning or not functioning at all. It is important to adhere to the specified minimum input voltage to ensure the proper operation and longevity of the electronic component. Failure to meet this requirement may lead to potential damage to the component or the overall system in which it is used.

    3.6 V
  • Control Mode

    In electronic components, "Control Mode" refers to the method or mode of operation used to regulate or control the behavior of the component. This parameter determines how the component responds to input signals or commands to achieve the desired output. The control mode can vary depending on the specific component and its intended function, such as voltage regulation, current limiting, or frequency modulation. Understanding the control mode of an electronic component is crucial for proper integration and operation within a circuit or system.

    CURRENT-MODE
  • Output Current-Max

    Output Current-Max is a parameter in electronic components that specifies the maximum amount of current that can be safely drawn from the output of the component without causing damage. It is an important specification to consider when designing circuits to ensure that the component can handle the required current without overheating or failing. Exceeding the maximum output current can lead to performance issues, component damage, or even complete failure of the circuit. It is crucial to adhere to the specified maximum output current to ensure the reliable operation of the electronic component and the overall circuit.

    1.25 A
  • Frequency - Switching

    "Frequency - Switching" in electronic components refers to the rate at which a device, such as a transistor or switching regulator, turns on and off during operation. This parameter is crucial in determining the efficiency and performance of power converters, oscillators, and other circuits that rely on rapid switching. Higher switching frequencies typically allow for smaller component sizes but may require more advanced design considerations to manage heat and electromagnetic interference.

    750kHz
  • Seated Height-Max

    Seated Height-Max in electronic components refers to the maximum height at which a component can be comfortably installed or operated when a user is seated. It is particularly relevant in designs involving ergonomic considerations, where the placement of controls, displays, or other interfaces must accommodate users in seated positions. This parameter ensures accessibility and usability, preventing strain or discomfort during operation.

    0.8 mm
  • Product Type

    a group of products which fulfill a similar need for a market segment or market as a whole.

    Switching Voltage Regulators
  • Switcher Configuration

    Switcher Configuration in electronic components refers to the arrangement or setup of a switcher circuit, which is a type of power supply that converts one form of electrical energy into another. The configuration of a switcher circuit includes the specific components used, such as transistors, diodes, capacitors, and inductors, as well as their interconnections and control mechanisms. The switcher configuration determines the efficiency, voltage regulation, and other performance characteristics of the power supply. Different switcher configurations, such as buck, boost, buck-boost, and flyback, are used for various applications depending on the desired output voltage and current requirements. Understanding and selecting the appropriate switcher configuration is crucial in designing reliable and efficient power supply systems for electronic devices.

    BUCK
  • Includes

    Includes is a parameter in electronic components that refers to the additional features or components that are included with the main product. This could include accessories, cables, software, or any other items that come packaged with the main electronic component. The "Includes" parameter is important for consumers to know exactly what they will be receiving when they purchase the product, and it can also help them determine the overall value and functionality of the product. Manufacturers often list the included items in the product description or packaging to provide transparency and help customers make informed purchasing decisions.

    -
  • Switching Frequency-Max

    Switching Frequency-Max is a parameter in electronic components that refers to the maximum frequency at which the device can switch on and off within a given period of time. This parameter is crucial in determining the performance and efficiency of the component, especially in applications such as power supplies, inverters, and motor drives. A higher switching frequency allows for faster operation and can result in smaller component sizes, reduced power losses, and improved overall system performance. However, it is important to consider the trade-offs between switching frequency, efficiency, and heat dissipation to ensure optimal operation of the electronic component.

    825 kHz
  • Max Duty Cycle

    Max Duty Cycle refers to the maximum percentage of time that an electronic component, such as a switch or a power supply, can be in an "on" state during a defined time period. It is an important parameter in pulse-width modulated (PWM) systems and helps determine how often a device can operate without overheating or sustaining damage. By specifying the maximum duty cycle, manufacturers provide guidance on the safe operational limits of the component, ensuring reliability and efficiency in various applications.

    87 %
  • Max Junction Temperature (Tj)

    Max Junction Temperature (Tj) refers to the maximum allowable temperature at the junction of a semiconductor device, such as a transistor or integrated circuit. It is a critical parameter that influences the performance, reliability, and lifespan of the component. Exceeding this temperature can lead to thermal runaway, breakdown, or permanent damage to the device. Proper thermal management is essential to ensure the junction temperature remains within safe operating limits during device operation.

    125 °C
  • w/Sequencer

    The parameter "w/Sequencer" in electronic components refers to the inclusion of a sequencer function within the component. A sequencer is a device or circuit that controls the timing and order of operations in a system. When a component is labeled as "w/Sequencer," it means that it has a built-in sequencer feature that allows for the precise sequencing of events or actions within the component.This feature is commonly found in components such as power supplies, lighting controllers, and audio equipment, where the timing and order of operations are critical for proper functionality. By incorporating a sequencer into the component, users can program and control the sequence of events, ensuring that different functions are executed in the correct order and at the right time.Overall, the "w/Sequencer" parameter indicates that the electronic component has a built-in sequencing capability, providing users with greater control and flexibility in managing the timing and order of operations within their systems.

    No
  • Voltage/Current - Output 1

    Voltage/Current - Output 1 is a parameter in electronic components that specifies the electrical characteristics of the output signal produced by the component. This parameter typically includes information about the voltage and current levels of the output signal, which are important for understanding how the component interacts with other parts of a circuit. The voltage level indicates the electrical potential difference between the output terminal and a reference point, while the current level represents the flow of electric charge through the output terminal. By knowing the Voltage/Current - Output 1 specifications, engineers and designers can ensure proper integration of the component into their circuits and achieve desired performance outcomes.

    0.8V ~ 16V, 500mA
  • Voltage/Current - Output 2

    Voltage/Current - Output 2 is a parameter in electronic components that specifies the electrical characteristics of the second output channel. This parameter typically provides information on the voltage and current ratings of the output, which are important for determining the compatibility of the component with other devices in a circuit. The voltage rating indicates the maximum voltage that can be safely applied to the output, while the current rating specifies the maximum current that the output can deliver without being damaged. Understanding this parameter is crucial for ensuring proper functionality and safety in electronic circuits.

    0.8V ~ 8V, 200mA
  • Voltage/Current - Output 3

    Voltage/Current - Output 3 refers to the specific electrical output parameter of an electronic component or device, indicating the voltage and current levels that it can deliver at its third output terminal. This parameter is critical for determining the compatibility of the component with other devices in a circuit. It ensures that the output characteristics meet the operational requirements for proper performance and safety in electronic systems.

    -
  • w/LED Driver

    The parameter "w/LED Driver" in electronic components refers to the inclusion of a built-in LED driver circuit within the component. An LED driver is a device that regulates the power supply to an LED, ensuring that it receives the correct voltage and current for optimal performance. By having the LED driver integrated into the component, it simplifies the design and installation process, as it eliminates the need for an external driver circuit. This parameter is commonly found in LED lighting products and other electronic devices that utilize LEDs for illumination.

    No
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    Coupling Nut
  • w/Supervisor

    The parameter "w/Supervisor" in electronic components typically refers to the inclusion of a supervisor or monitoring function within the component itself. This supervisor function is designed to oversee and manage certain aspects of the component's operation, such as power supply, voltage levels, temperature, or other critical parameters. By having a supervisor integrated into the component, it can provide additional control, protection, and monitoring capabilities, enhancing the overall reliability and performance of the electronic system in which it is used. This feature can be particularly useful in applications where precise control and monitoring are essential for safe and efficient operation.

    No
  • Input Voltage

    Input voltage is the voltage supplied to an electronic component or circuit for it to function properly. It is the driving force that enables the component to perform its intended tasks, such as amplifying signals or powering devices. The input voltage can vary depending on the design specifications of the component and its intended application. Exceeding the specified input voltage can lead to damage or failure of the component.

    3.6 Vto 36 V
  • Shutdown

    The parameter "Shutdown" in electronic components refers to a state in which a device is turned off or enters a low-power mode to conserve energy. In this mode, the component typically reduces its power consumption significantly and may disable its outputs or functions. The shutdown feature is often controlled by an external signal or voltage level, allowing for efficient power management in various applications. It is commonly used in integrated circuits, voltage regulators, and power amplifiers to enhance battery life and overall system efficiency.

    Shutdown
  • Product Category

    a particular group of related products.

    Switching Voltage Regulators
  • Height
    800 µm
  • Width
    3 mm
  • Length
    3 mm
  • Material Flammability Rating

    The Material Flammability Rating is a parameter used to indicate the flammability characteristics of materials used in electronic components. It is typically measured according to standards such as UL94, which classifies materials into different categories based on their flammability properties. The rating helps in assessing the fire safety of electronic devices and components, as materials with higher flammability ratings are more resistant to ignition and combustion. Manufacturers often specify the Material Flammability Rating of their components to ensure compliance with safety regulations and standards. It is important to consider this parameter when designing and selecting electronic components to minimize fire hazards and ensure the overall safety of the end product.

    -
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Analog Devices LT3645EUD#TRPBF.

LT3645EUD#TRPBF Overview

It is packaged in 16-WFQFN Exposed Pad for voltage regulators' voltage regulators' transportation.Ready for shipping in Reel package.Voltage regulator supports 2 outputs in total.The operating temperature should be set to -65°C ~ 175°C to avoid mal-function.Speaking of types, this is a typical For Male Pins switching regulator.The pinout of the switching regulator starts from 16 pins it has.When proceeding relow solder, temperature is allowed to peak NOT SPECIFIED.This voltage regulator operates from a voltage of 1.4 mA.The voltage regulator has 16 pins.It has a 16 V voltage output.This regulator requires input voltage ≥ 3.6 V.This regulator controller is of the Adjustable output type.Current output from the DC DC Switching Regulator should be 500 mA.This regulator controller presents a quiescent current of 1.4 mA.Other PMIC - Power Management ICs like the voltage regulator DC to DC play a important role in the industry.Supplied with 16-QFN (3x3) package.The IC specialliALSO OPERATES IN ADJUSTABLE MODE FROM 0.8 TO 8V, ALSO OPERATES AS LDO REGULATORes itself in certain areas along with ALSO OPERATES IN ADJUSTABLE MODE FROM 0.8 TO 8V, ALSO OPERATES AS LDO REGULATOR.Temperature lower than -40 °C is not suitable for the voltage regulator.Temperature higher than 125 °C is not recommended for use.The voltage regulator 12v is from KJB.

LT3645EUD#TRPBF Features

2 outputs
Operating Temperature: -65°C ~ 175°C
Peak Reflow Temperature: NOT SPECIFIED
Quiescent Current: 1.4 mA
ALSO OPERATES IN ADJUSTABLE MODE FROM 0.8 TO 8V, ALSO OPERATES AS LDO REGULATOR

LT3645EUD#TRPBF Applications

There are a lot of Analog Devices
LT3645EUD#TRPBF Linear Regulator Controllers applications.


  • Ultrahigh current ultralow dropout voltage regulator
  • Constant high-current source
  • Low parts count 5.0V to 3.3V computer supply
  • Low noise SMPS post regulator
  • Low-dropout SMPS post regulator
  • High-current, current-limited switch
  • Dual/Triple Power Supplies
  • Desknotes and Notebooks
  • Graphic Cards
  • Ultra-Low-Dropout
LT3645EUD#TRPBF Relevant information

Hot Sale
Related Categories
Similar Products
Related Products
Same Manufacturer Products
The following parts include "LT3645EUD#TRPBF" in Analog Devices LT3645EUD#TRPBF.
  • Part Number
  • Manufacturer
  • Package
  • Description