pid_38272551_ltc1864lcs823pbf-analog-devices-datasheet-14357611.pdf Outline Dimensions_1
pid_38272551_ltc1864lcs823pbf-analog-devices-datasheet-14357611.pdf Outline Dimensions_1
pid_38272551_ltc1864lcs823pbf-analog-devices-datasheet-14357611.pdf Outline Dimensions_2
pid_38272551_ltc1864lcs823pbf-analog-devices-datasheet-14357611.pdf Outline Dimensions_3
feed

Analog Devices LTC1864LCS8#PBF

ADC 1.27 mm Analog to Digital Converter

Manufacturer No:

LTC1864LCS8#PBF

Manufacturer:

Analog Devices

Utmel No:

153-LTC1864LCS8#PBF

Package:

Wide 0805 (2012 Metric), 0508

ECAD Model:

Description:

16 Bit 1.27 mm ADC 3430 Series Wide 0805 (2012 Metric), 0508

Quantity:

Unit Price: $11.977967

Ext Price: $11.98

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 63

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $11.977967

    $11.98

  • 10

    $11.299969

    $113.00

  • 100

    $10.660348

    $1,066.03

  • 500

    $10.056932

    $5,028.47

  • 1000

    $9.487672

    $9,487.67

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
LTC1864LCS8#PBF information

Specifications
Documents & Media
Product Details
Analog Devices LTC1864LCS8#PBF technical specifications, attributes, parameters and parts with similar specifications to Analog Devices LTC1864LCS8#PBF.
  • Type
    Parameter
  • Lifecycle Status

    Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.

    Production (Last Updated: 3 weeks ago)
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    Wide 0805 (2012 Metric), 0508
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Surface Mount
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    YES
  • Number of Pins
    8
  • Supplier Device Package

    The parameter "Supplier Device Package" in electronic components refers to the physical packaging or housing of the component as provided by the supplier. It specifies the form factor, dimensions, and layout of the component, which are crucial for compatibility and integration into electronic circuits and systems. The supplier device package information typically includes details such as the package type (e.g., DIP, SOP, QFN), number of pins, pitch, and overall size, allowing engineers and designers to select the appropriate component for their specific application requirements. Understanding the supplier device package is essential for proper component selection, placement, and soldering during the manufacturing process to ensure optimal performance and reliability of the electronic system.

    0508
  • Number of Terminals
    8
  • Package
    Tape & Reel (TR);Cut Tape (CT);Digi-Reel®;
  • Mfr
    TE Connectivity Passive Product
  • Product Status
    Active
  • Number of Elements
    1
  • Manufacturer Lifecycle Status
    PRODUCTION (Last Updated: 3 weeks ago)
  • RoHS
    Compliant
  • Base Product Number

    "Base Product Number" (BPN) refers to the fundamental identifier assigned to a component by the manufacturer. This number is used to identify a specific product family or series of components that share common features, characteristics, or functionality. The BPN is usually part of a larger part number or order code that includes additional information, such as variations in packaging, tolerance, voltage ratings, and other specifications.

    LTC1864
  • Package Description
    SOP, SOP8,.25
  • Package Style
    SMALL OUTLINE
  • Moisture Sensitivity Levels
    1
  • Package Body Material
    PLASTIC/EPOXY
  • Package Equivalence Code
    SOP8,.25
  • Manufacturer Package Code
    S8
  • Supply Voltage-Nom
    2.7 V
  • Reflow Temperature-Max (s)
    30
  • Operating Temperature-Max
    70 °C
  • Rohs Code
    Yes
  • Manufacturer Part Number
    LTC1864LCS8#PBF
  • Package Code
    SOP
  • Package Shape
    RECTANGULAR
  • Manufacturer
    Linear Technology
  • Part Life Cycle Code
    Transferred
  • Ihs Manufacturer
    LINEAR TECHNOLOGY CORP
  • Risk Rank
    3.29
  • Part Package Code
    SOIC
  • Maximum Operating Temperature

    the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    + 70 C
  • Minimum Operating Temperature
    0 C
  • Mounting Styles
    SMD/SMT
  • Interface Type
    SPI
  • SNR - Signal to Noise Ratio
    82 dB
  • Analog Supply Voltage
    2.7 V to 3.6 V
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -55°C ~ 155°C
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    3430
  • Size / Dimension

    In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.

    0.049 L x 0.079 W (1.25mm x 2.00mm)
  • Tolerance

    In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.

    ±1%
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Number of Terminations
    2
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Temperature Coefficient

    The resistance-change factor per degree Celsius of temperature change is called the temperature coefficient of resistance. This factor is represented by the Greek lower-case letter “alpha” (α). A positive coefficient for a material means that its resistance increases with an increase in temperature.

    ±100ppm/°C
  • Resistance

    Resistance is a fundamental property of electronic components that measures their opposition to the flow of electric current. It is denoted by the symbol "R" and is measured in ohms (Ω). Resistance is caused by the collisions of electrons with atoms in a material, which generates heat and reduces the flow of current. Components with higher resistance will impede the flow of current more than those with lower resistance. Resistance plays a crucial role in determining the behavior and functionality of electronic circuits, such as limiting current flow, voltage division, and controlling power dissipation.

    390 Ohms
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Matte Tin (Sn)
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    70 °C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    0 °C
  • Composition

    Parameter "Composition" in electronic components refers to the specific materials and substances used in the construction of the component. It encompasses the chemical and physical elements that make up the component, influencing its electrical, thermal, and mechanical properties. The composition can affect the performance, reliability, and durability of the component in various applications. Understanding the composition is essential for optimizing the design and functionality of electronic devices.

    Thick Film
  • Power (Watts)

    The parameter "Power (Watts)" in electronic components refers to the amount of electrical energy consumed or dissipated by the component. It is a measure of how much energy the component can handle or generate. Power is typically measured in watts, which is a unit of power that indicates the rate at which energy is transferred. Understanding the power rating of electronic components is crucial for ensuring they operate within their specified limits to prevent overheating and potential damage. It is important to consider power requirements when designing circuits or selecting components to ensure proper functionality and reliability.

    1W
  • HTS Code

    HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.

    8542.39.00.01
  • Subcategory
    Analog to Digital Converters
  • Max Power Dissipation

    The maximum power that the MOSFET can dissipate continuously under the specified thermal conditions.

    400 mW
  • Technology

    In the context of electronic components, the parameter "Technology" refers to the specific manufacturing process and materials used to create the component. This includes the design, construction, and materials used in the production of the component. The technology used can greatly impact the performance, efficiency, and reliability of the electronic component. Different technologies may be used for different types of components, such as integrated circuits, resistors, capacitors, and more. Understanding the technology behind electronic components is important for selecting the right components for a particular application and ensuring optimal performance.

    CMOS
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    DUAL
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    GULL WING
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    260
  • Number of Functions
    1
  • Terminal Pitch

    The center distance from one pole to the next.

    1.27 mm
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    compliant
  • Pin Count

    a count of all of the component leads (or pins)

    8
  • JESD-30 Code

    JESD-30 Code refers to a standardized descriptive designation system established by JEDEC for semiconductor-device packages. This system provides a systematic method for generating designators that convey essential information about the package's physical characteristics, such as size and shape, which aids in component identification and selection. By using JESD-30 codes, manufacturers and engineers can ensure consistency and clarity in the specification of semiconductor packages across various applications and industries.

    R-PDSO-G8
  • Qualification Status

    An indicator of formal certification of qualifications.

    Not Qualified
  • Brand Name
    Linear Technology
  • Operating Supply Voltage

    The voltage level by which an electrical system is designated and to which certain operating characteristics of the system are related.

    3 V
  • Failure Rate

    the frequency with which an engineered system or component fails, expressed in failures per unit of time. It is usually denoted by the Greek letter λ (lambda) and is often used in reliability engineering.

    -
  • Polarity

    In electronic components, polarity refers to the orientation or direction in which the component must be connected in a circuit to function properly. Components such as diodes, capacitors, and LEDs have polarity markings to indicate which terminal should be connected to the positive or negative side of the circuit. Connecting a component with incorrect polarity can lead to malfunction or damage. It is important to pay attention to polarity markings and follow the manufacturer's instructions to ensure proper operation of electronic components.

    Unipolar
  • Power Supplies

    an electronic circuit that converts the voltage of an alternating current (AC) into a direct current (DC) voltage.?

    3/3.3 V
  • Temperature Grade

    Temperature grades represent a tire's resistance to heat and its ability to dissipate heat when tested under controlled laboratory test conditions.

    COMMERCIAL
  • Configuration

    The parameter "Configuration" in electronic components refers to the specific arrangement or setup of the components within a circuit or system. It encompasses how individual elements are interconnected and their physical layout. Configuration can affect the functionality, performance, and efficiency of the electronic system, and may influence factors such as signal flow, impedance, and power distribution. Understanding the configuration is essential for design, troubleshooting, and optimizing electronic devices.

    S/H-ADC
  • Number of Channels
    1 Channel
  • Interface

    In electronic components, the term "Interface" refers to the point at which two different systems, devices, or components connect and interact with each other. It can involve physical connections such as ports, connectors, or cables, as well as communication protocols and standards that facilitate the exchange of data or signals between the connected entities. The interface serves as a bridge that enables seamless communication and interoperability between different parts of a system or between different systems altogether. Designing a reliable and efficient interface is crucial in ensuring proper functionality and performance of electronic components and systems.

    SPI, Serial
  • Max Supply Voltage

    In general, the absolute maximum common-mode voltage is VEE-0.3V and VCC+0.3V, but for products without a protection element at the VCC side, voltages up to the absolute maximum rated supply voltage (i.e. VEE+36V) can be supplied, regardless of supply voltage.

    3.6 V
  • Min Supply Voltage

    The minimum supply voltage (V min ) is explored for sequential logic circuits by statistically simulating the impact of within-die process variations and gate-dielectric soft breakdown on data retention and hold time.

    2.7 V
  • Power Dissipation

    the process by which an electronic or electrical device produces heat (energy loss or waste) as an undesirable derivative of its primary action.

    400 mW
  • Number of Bits
    16
  • Input Type

    Input type in electronic components refers to the classification of the signal or data that a component can accept for processing or conversion. It indicates whether the input is analog, digital, or a specific format such as TTL or CMOS. Understanding input type is crucial for ensuring compatibility between different electronic devices and circuits, as it determines how signals are interpreted and interacted with.

    Differential
  • Architecture

    In electronic components, the parameter "Architecture" refers to the overall design and structure of the component. It encompasses the arrangement of internal components, the layout of circuitry, and the physical form of the component. The architecture of an electronic component plays a crucial role in determining its functionality, performance, and compatibility with other components in a system. Different architectures can result in variations in power consumption, speed, size, and other key characteristics of the component. Designers often consider the architecture of electronic components carefully to ensure optimal performance and integration within a larger system.

    SAR
  • Number of Inputs
    1
  • Converter Type

    The parameter "Converter Type" in electronic components refers to the classification of devices that convert one form of energy or signal to another. This includes devices such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and various types of signal converters used in communication, power management, and measurement systems. Each converter type is designed to facilitate the manipulation or transformation of signals to meet specific application requirements. The choice of converter type typically depends on factors such as the signal characteristics, required accuracy, and conversion speed.

    ADC, SUCCESSIVE APPROXIMATION
  • Supply Type

    Supply Type in electronic components refers to the classification of power sources used to operate the component. It indicates whether the component requires DC or AC power, and if DC, specifies the voltage levels such as low, medium, or high. Different supply types can affect the performance, compatibility, and application of the component in electronic circuits. Understanding the supply type is crucial for proper component selection and integration into electronic designs.

    Single
  • Seated Height-Max

    Seated Height-Max in electronic components refers to the maximum height at which a component can be comfortably installed or operated when a user is seated. It is particularly relevant in designs involving ergonomic considerations, where the placement of controls, displays, or other interfaces must accommodate users in seated positions. This parameter ensures accessibility and usability, preventing strain or discomfort during operation.

    1.752 mm
  • Reference Type

    a code object that is not stored directly where it is created, but that acts as a kind of pointer to a value stored elsewhere.

    External
  • Data Interface

    A Data Interface in EDQ is a template of a set of attributes representing a given entity, used to create processes that read from, or write to, interfaces rather than directly from or to sources or targets of data.

    SPI
  • Resolution

    Resolution in electronic components refers to the smallest increment of measurement or change that can be detected or represented by the component. It is a crucial specification in devices such as sensors, displays, and converters, as it determines the level of detail or accuracy that can be achieved. For example, in a digital camera, resolution refers to the number of pixels that make up an image, with higher resolution indicating a greater level of detail. In analog-to-digital converters, resolution is the number of discrete values that can be represented in the digital output, determining the precision of the conversion process. Overall, resolution plays a significant role in determining the performance and capabilities of electronic components in various applications.

    2 B
  • Sampling Rate

    often described in the context of signal processing as the number of samples per time.

    150 ksps
  • Voltage - Supply, Analog

    Voltage - Supply, Analog is a parameter in electronic components that specifies the range of voltage levels required to power the analog circuitry within the component. This parameter indicates the minimum and maximum voltage levels that the component can accept for proper operation of its analog functions. It is crucial to ensure that the voltage supplied to the component falls within this specified range to prevent damage and ensure optimal performance. Understanding and adhering to the "Voltage - Supply, Analog" parameter is essential for the proper functioning of analog circuits in electronic components.

    2.7V ~ 3.6V
  • Voltage - Supply, Digital

    Voltage - Supply, Digital is a parameter that specifies the voltage level required to power the digital circuitry within an electronic component, such as an integrated circuit or a microcontroller. This parameter is crucial for ensuring proper operation of the digital components, as supplying the correct voltage level is essential for reliable performance. The specified voltage range typically includes both minimum and maximum values within which the component can operate safely and efficiently. It is important to adhere to the recommended voltage supply range to prevent damage to the component and to maintain the integrity of the digital signals being processed.

    2.7V ~ 3.6V
  • Number of Analog In Channels
    1
  • Sampling Rate (Per Second)

    The sampling rate (per second) in electronic components refers to the frequency at which an analog signal is measured or sampled to convert it into a digital signal. It is typically expressed in Hertz (Hz) and indicates how many times per second the analog signal is sampled. A higher sampling rate allows for better representation of the original signal, capturing more detail and reducing distortion during the conversion process. In audio applications, for example, common sampling rates include 44.1 kHz for CD-quality audio and 48 kHz for video production.

    150k
  • Output Bit Code

    Output Bit Code refers to the digital representation of the output signal of an electronic component, typically in binary form. It indicates the specific combination of bits that represent the output value of the component. The output bit code is crucial for interpreting and processing the output data accurately in digital systems. By understanding the output bit code, engineers can design appropriate circuits and algorithms to manipulate and utilize the output information effectively.

    BINARY
  • Linearity Error-Max (EL)

    Linearity Error-Max (EL) is a parameter used to quantify the deviation of a device's output from a straight line response over its specified input range. It measures the maximum difference between the ideal output and the actual output of the component when subjected to varying input levels. A smaller linearity error indicates better performance, as it signifies more accurate and consistent output behavior across the input spectrum. This parameter is critical in applications requiring precision, such as analog-to-digital converters and other signal processing components.

    0.0122%
  • Integral Nonlinearity (INL)

    Integral Nonlinearity (INL) is a measure of the deviation of a transfer function from a straight line when considering the entire output range of a device, such as a digital-to-analog converter or an analog-to-digital converter. It is quantified as the maximum deviation of the actual output from the ideal output across the entire input range, expressed as a percentage of the full-scale output. INL indicates how closely the output follows a linear model, influencing the accuracy of the signal representation in electronic components. A lower INL value signifies better linearity and higher precision in signal processing applications.

    8 LSB
  • Sample and Hold / Track and Hold

    "Sample and Hold" and "Track and Hold" are two related functions commonly found in electronic components such as analog-to-digital converters (ADCs) and signal processing circuits. In a Sample and Hold circuit, the input signal is sampled at specific intervals and held constant until the next sampling period. This allows the circuit to capture and store the input signal's value for further processing or conversion.On the other hand, a Track and Hold circuit continuously tracks the input signal's value and holds it steady when required, typically during the conversion process. This ensures that the input signal remains constant and accurate during the conversion process.Both functions are essential in maintaining the integrity and accuracy of analog signals in digital systems, allowing for precise measurements and processing of signals in various electronic applications.

    SAMPLE
  • Number of A/D Converters
    1
  • Number of Converters
    1
  • Ratio - S/H:ADC

    The parameter "Ratio - S/H:ADC" in electronic components refers to the ratio between the sample and hold (S/H) circuit and the analog-to-digital converter (ADC) in a system. The sample and hold circuit is responsible for capturing and holding the input signal at a specific moment in time, while the ADC converts this analog signal into a digital format for processing. The ratio between the S/H and ADC components is important as it determines the accuracy and speed of the analog-to-digital conversion process. A higher ratio typically indicates a more precise and efficient conversion process, leading to better overall performance of the electronic system. Engineers often consider this parameter when designing and optimizing electronic circuits to ensure reliable and high-quality signal processing.

    1:1
  • Analog Input Voltage-Max

    Analog Input Voltage-Max refers to the maximum voltage level that can be safely applied to the input of an electronic component, such as an integrated circuit or sensor, without causing damage. This parameter is crucial for ensuring the proper functioning and longevity of the component. Exceeding the specified maximum input voltage can lead to overloading, overheating, or even permanent damage to the component. It is important for designers and engineers to carefully consider and adhere to this parameter when designing circuits or systems to prevent potential failures and ensure reliable operation.

    2.5 V
  • Output Format

    Output formats are used to determine which data is exported and how data is displayed in many areas of OLIB.

    SERIAL
  • Conversion Time-Max

    Conversion Time-Max is a parameter in electronic components that refers to the maximum amount of time it takes for a device to complete a conversion process. This parameter is commonly found in analog-to-digital converters (ADCs) and digital-to-analog converters (DACs). It is an important specification as it determines the speed at which the device can convert an analog signal into a digital format or vice versa. A shorter conversion time-max indicates a faster device, which can be crucial in applications where real-time processing or high-speed data acquisition is required.

    4.66 µs
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    Automotive AEC-Q200
  • Height Seated (Max)

    Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.

    0.026 (0.65mm)
  • Width
    3.9 mm
  • Length
    4.9 mm
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
  • Ratings

    The parameter "Ratings" in electronic components refers to the specified limits that define the maximum operational capabilities of a component. These ratings include voltage, current, power, temperature, and frequency, determining the conditions under which the component can function safely and effectively. Exceeding these ratings can lead to failure, damage, or unsafe operation, making it crucial for designers to adhere to them during component selection and usage.

    AEC-Q200
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Analog Devices LTC1864LCS8#PBF.

LTC1864LCS8#PBF Overview

The analogue to digital converter is designed with 16 Bits.The AD converter is embedded in the Wide 0805 (2012 Metric), 0508 package.The ADC converter is equipped with 1 Functions .There are 2 terminations in this electrical AD converter, which are the practice of ending a transmission line with a device that matches the characteristic impedance of the line.The A/D converter has 1 channels.The is equipped with 8 pin count.The peak reflow temperature (Cel) amounts to 260 to be essentially indestructible.There are ADC, SUCCESSIVE APPROXIMATION converters based on the source input voltage and the output voltage.This electronic AD converter is mounted in the way of Surface Mount.When operating, analogue to digital converter's operating temperature should be kept at -55°C ~ 155°C.The number of samples of audio recorded every second is 150k Hz.The input type of this electronic AD converter is Differential.There are External reference types differentiated on the way by which they are garbage collected. This electronic digital converter is configured in such a way that S/H-ADC.The Sample/Track and Hold component of this electronic AD converter provides a way to sample a continuously varying analog signal and to hold or freeze its value for SAMPLE time.The architecture that analogue to digital converter's core adopts is SAR.There are 8 pins, which are pronged contacts as part of a signal interface in a computer or other communications device. The supply/analog voltage of this electrical ADC converter is 2.7V ~ 3.6V, which converts alternative voltage (AC voltage) to regulated direct voltage (DC voltage) and provide regulated DC power in order to drive a load.The number of pixels of this electrical AD converter is 2 B, which is on a display or in a camera sensor (specifically in a digital image).This analogue to digital converter is included in Analog to Digital Converters.This electrical digital converter is lead free, which means made without lead, or has no lead added to it.Single can be used to categorize supply types.The supply/digital voltage of this electrical AD converter is 2.7V ~ 3.6V.Surface Mount can be used to mount the analogue to digital converter.The ADC converter operates with the maximal supply voltage of 3.6 V.1 inputs are employed.It operates with the minimal supply voltage of 2.7 V.The output formats of this electrical AD converter are SERIAL , which are used to determine which data is exported and how data is displayed in many areas of OLIB.This electrical digital converter operates from a supply voltage of 3 V.The maximal analog input voltage of this electrical AD converter is 2.5 V.The ADC converter operates from 3/3.3 V power supplies.As an undesirable derivative of its primary action, The heat (energy loss or waste) that this electronic or electrical digital converter produces is 400 mW. The maximal heat (energy loss or waste) that this electronic or electrical ADC converter produces is 400 mW.The number of channels is growing strong/weak: 1 Channel.It operates with the maximal operating temperature of 70 °C to ensure its reliability.It operates with the minimal operating temperature of 0 °C to ensure its reliability.There are 1 A/D converters, which are used to convert an analog signal like voltage to digital form so that it can be read and processed by a microcontroller. There are 1 converters, which will convert numbers to words and figures to words. It is a type of FPGA belonging to the 3430 series.It employs 0508 as its supplier device package.There are 8 terminals, which can allow us to accomplish and automate tasks on a computer without the use of a graphical user interface.

LTC1864LCS8#PBF Features

1 Functions
2 basic kinds of terminations
8 pin count
Minimal supply voltage of 2.7 V
3/3.3 V power supplies
3430 series

LTC1864LCS8#PBF Applications

There are a lot of Analog Devices
LTC1864LCS8#PBF ADC applications.


  • Cell Phones
  • Digital Multimeters, PLC's (Programming Logic Controllers)
  • RADAR processing, digital oscilloscopes
  • CMOS Image sensors for mobile applications
  • Medical Instrumentation and medical imaging
  • Music recording
  • Digital signal processing
  • Scientific instruments
  • Rotary encoder
  • Displaying