

Analog Devices LTC4451AV#TRPBF
PMIC Energy Metering IC
Manufacturer No:
LTC4451AV#TRPBF
Tiny WHSLManufacturer:
Utmel No:
153-LTC4451AV#TRPBF
Package:
LQFN-16
Description:
PMIC LTC4451 Series LQFN-16
Quantity:
Unit Price: $4.595912
Ext Price: $4.60
Delivery:





Payment:











In Stock : 982
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$4.595912
$4.60
10
$4.335766
$43.36
100
$4.090346
$409.03
500
$3.858817
$1,929.41
1000
$3.640393
$3,640.39
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
LQFN-16 - Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Surface Mount - Supplier Device Package
The parameter "Supplier Device Package" in electronic components refers to the physical packaging or housing of the component as provided by the supplier. It specifies the form factor, dimensions, and layout of the component, which are crucial for compatibility and integration into electronic circuits and systems. The supplier device package information typically includes details such as the package type (e.g., DIP, SOP, QFN), number of pins, pitch, and overall size, allowing engineers and designers to select the appropriate component for their specific application requirements. Understanding the supplier device package is essential for proper component selection, placement, and soldering during the manufacturing process to ensure optimal performance and reliability of the electronic system.
16-LQFN (2x3) - Ir - Reverse Current10 uA
- Maximum Operating Temperature
the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.
+ 125 C - Minimum Operating Temperature- 40 C
- Factory Pack QuantityFactory Pack Quantity2500
- Mounting StylesSMD/SMT
- Part # AliasesLTC4451AV#TRPBF
- ManufacturerAnalog Devices Inc.
- BrandAnalog Devices
- RoHSDetails
- PackageTape & Reel (TR);Cut Tape (CT);Digi-Reel®;
- MfrAnalog Devices Inc.
- Product StatusActive
- Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
LTC4451 - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Reel - Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-40°C ~ 125°C - TypeN+1 ORing Controller
- Applications
The parameter "Applications" in electronic components refers to the specific uses or functions for which a component is designed. It encompasses various fields such as consumer electronics, industrial automation, telecommunications, automotive, and medical devices. Understanding the applications helps in selecting the right components for a particular design based on performance, reliability, and compatibility requirements. This parameter also guides manufacturers in targeting their products to relevant markets and customer needs.
Battery Backup, Industrial - SubcategoryDiodes & Rectifiers
- Technology
In the context of electronic components, the parameter "Technology" refers to the specific manufacturing process and materials used to create the component. This includes the design, construction, and materials used in the production of the component. The technology used can greatly impact the performance, efficiency, and reliability of the electronic component. Different technologies may be used for different types of components, such as integrated circuits, resistors, capacitors, and more. Understanding the technology behind electronic components is important for selecting the right components for a particular application and ensuring optimal performance.
Si - Voltage - Supply
Voltage - Supply refers to the range of voltage levels that an electronic component or circuit is designed to operate with. It indicates the minimum and maximum supply voltage that can be applied for the device to function properly. Providing supply voltages outside this range can lead to malfunction, damage, or reduced performance. This parameter is critical for ensuring compatibility between different components in a circuit.
0V ~ 40V - Current - Output (Max)
Current - Output (Max) is a parameter in electronic components that specifies the maximum amount of current that the component can deliver at its output. This parameter is crucial in determining the capability of the component to supply power to other parts of a circuit or system. It is typically measured in amperes (A) and helps in ensuring that the component can handle the required current without getting damaged or causing malfunctions. Designers and engineers use this specification to select components that can meet the current requirements of their circuits and prevent overloading or overheating issues.
7A - Current - Supply
Current - Supply is a parameter in electronic components that refers to the maximum amount of electrical current that the component can provide to the circuit it is connected to. It is typically measured in units of amperes (A) and is crucial for determining the power handling capability of the component. Understanding the current supply rating is important for ensuring that the component can safely deliver the required current without overheating or failing. It is essential to consider this parameter when designing circuits to prevent damage to the component and ensure proper functionality of the overall system.
20 µA - FET Type
"FET Type" refers to the type of Field-Effect Transistor (FET) being used in an electronic component. FETs are three-terminal semiconductor devices that can be classified into different types based on their construction and operation. The main types of FETs include Metal-Oxide-Semiconductor FETs (MOSFETs), Junction FETs (JFETs), and Insulated-Gate Bipolar Transistors (IGBTs).Each type of FET has its own unique characteristics and applications. MOSFETs are commonly used in digital circuits due to their high input impedance and low power consumption. JFETs are often used in low-noise amplifiers and switching circuits. IGBTs combine the high input impedance of MOSFETs with the high current-carrying capability of bipolar transistors, making them suitable for high-power applications like motor control and power inverters.When selecting an electronic component, understanding the FET type is crucial as it determines the device's performance and suitability for a specific application. It is important to consider factors such as voltage ratings, current handling capabilities, switching speeds, and power dissipation when choosing the right FET type for a particular circuit design.
N-Channel - Product Type
a group of products which fulfill a similar need for a market segment or market as a whole.
Schottky Diodes & Rectifiers - Operating Temperature Range
An operating temperature is the allowable temperature range of the local ambient environment at which an electrical or mechanical device operates. The device will operate effectively within a specified temperature range which varies based on the device function and application context, and ranges from the minimum operating temperature to the maximum operating temperature (or peak operating temperature).
- 40 C to + 125 C - Ratio - Input:Output
The parameter "Ratio - Input:Output" in electronic components refers to the relationship between the input and output quantities of a device or system. It is a measure of how the input signal or energy is transformed or converted into the output signal or energy. This ratio is often expressed as a numerical value or percentage, indicating the efficiency or effectiveness of the component in converting the input to the desired output. A higher ratio typically signifies better performance or higher efficiency, while a lower ratio may indicate losses or inefficiencies in the conversion process. Understanding and optimizing the input-output ratio is crucial in designing and evaluating electronic components for various applications.
1:1 - Internal Switch(s)
The term "Internal Switch(s)" in electronic components typically refers to a built-in mechanism within a device that allows for the control of electrical current flow. These internal switches can be used to turn circuits on or off, change the direction of current, or regulate the flow of electricity within the component. They are often designed to be controlled externally, either manually or automatically, to enable various functions or operations within the electronic device. Internal switches play a crucial role in the overall functionality and performance of electronic components by providing a means to manage and manipulate electrical signals effectively.
No - Product
In the context of electronic components, the parameter "Product" typically refers to the specific item or device being discussed or analyzed. It can refer to a physical electronic component such as a resistor, capacitor, transistor, or integrated circuit. The product parameter may also encompass more complex electronic devices like sensors, displays, microcontrollers, or communication modules.Understanding the product parameter is crucial in electronics as it helps identify the characteristics, specifications, and functionality of the component or device in question. This information is essential for selecting the right components for a circuit design, troubleshooting issues, or comparing different products for a particular application. Manufacturers often provide detailed product datasheets that outline key specifications, performance characteristics, and application guidelines to assist engineers and designers in utilizing the component effectively.
Schottky Diodes - Delay Time - OFF
Delay Time - OFF is a parameter in electronic components that refers to the time it takes for a device to turn off after a specific trigger or input signal is removed. This parameter is crucial in determining the response time of the component and is often specified in datasheets for transistors, relays, and other devices. A shorter delay time-off indicates a faster response of the component to switch off, while a longer delay time-off may result in a delay in deactivating the device. It is important to consider the delay time-off when designing circuits to ensure proper functionality and timing requirements are met.
1 µs - Vf - Forward Voltage
In electronic components, "Vf - Forward Voltage" refers to the voltage required for current to flow through a diode or LED in the forward direction. It is the minimum voltage needed to overcome the barrier potential at the junction of the diode, allowing current to pass through. The forward voltage drop is typically specified in datasheets and is an important parameter to consider when designing circuits using diodes or LEDs. Understanding the forward voltage helps in selecting the appropriate components and ensuring proper operation of the circuit.
15 mV - Delay Time - ON
Delay Time - ON is a parameter in electronic components that refers to the time it takes for a device to transition from an off state to an on state after a specific input signal is applied. This parameter is crucial in determining the response time of the component and is often specified in datasheets to provide information on the device's performance characteristics. A shorter delay time indicates a faster response, while a longer delay time may result in slower switching speeds. Designers and engineers use this parameter to ensure proper timing and functionality of electronic circuits and systems.
300 ns - Product Category
a particular group of related products.
Schottky Diodes & Rectifiers