pid_36058339_max125ceax2btd-analog-devices-datasheet-8474219.pdf  Pinout Diagram_1
pid_36058339_max125ceax2btd-analog-devices-datasheet-8474219.pdf  Pinout Diagram_1
pid_36058339_max125ceax2btd-analog-devices-datasheet-8474219.pdf  Pinout Diagram_2
pid_36058339_max125ceax2btd-analog-devices-datasheet-8474219.pdf  Pinout Diagram_3
pid_36058339_max125ceax2btd-analog-devices-datasheet-8474219.pdf  Pinout Diagram_4
feed

Analog Devices MAX125CEAX+TD

Special Purpose ADCs/DACs 14 b b Special Purpose ADCs/DACs 250k k

Manufacturer No:

MAX125CEAX+TD

Manufacturer:

Analog Devices

Utmel No:

153-MAX125CEAX+TD

Package:

4-SMD, No Lead

ECAD Model:

Description:

14 b b 250k k Special Purpose ADCs/DACs Parallel 1.8V ~ 3.3V V 4-SMD, No Lead Surface Mount 36-SSOP

Quantity:

Unit Price: $63.609189

Ext Price: $63.61

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 42

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $63.609189

    $63.61

  • 10

    $60.008669

    $600.09

  • 100

    $56.611952

    $5,661.20

  • 500

    $53.407502

    $26,703.75

  • 1000

    $50.384436

    $50,384.44

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
MAX125CEAX+TD information

Specifications
Documents & Media
Product Details
Analog Devices MAX125CEAX+TD technical specifications, attributes, parameters and parts with similar specifications to Analog Devices MAX125CEAX+TD.
  • Type
    Parameter
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    4-SMD, No Lead
  • Supplier Device Package

    The parameter "Supplier Device Package" in electronic components refers to the physical packaging or housing of the component as provided by the supplier. It specifies the form factor, dimensions, and layout of the component, which are crucial for compatibility and integration into electronic circuits and systems. The supplier device package information typically includes details such as the package type (e.g., DIP, SOP, QFN), number of pins, pitch, and overall size, allowing engineers and designers to select the appropriate component for their specific application requirements. Understanding the supplier device package is essential for proper component selection, placement, and soldering during the manufacturing process to ensure optimal performance and reliability of the electronic system.

    36-SSOP
  • Package
    Tape & Reel (TR)
  • Base Product Number

    "Base Product Number" (BPN) refers to the fundamental identifier assigned to a component by the manufacturer. This number is used to identify a specific product family or series of components that share common features, characteristics, or functionality. The BPN is usually part of a larger part number or order code that includes additional information, such as variations in packaging, tolerance, voltage ratings, and other specifications.

    SG-8101
  • Mfr
    EPSON
  • Product Status
    Active
  • Maximum Operating Temperature

    the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    + 85 C
  • Minimum Operating Temperature
    - 40 C
  • Mounting Styles
    SMD/SMT
  • Interface Type
    Parallel
  • SNR - Signal to Noise Ratio
    75 dB
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C ~ 105°C
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    SG-8101
  • Size / Dimension

    In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.

    0.276 L x 0.197 W (7.00mm x 5.00mm)
  • Type
    XO (Standard)
  • Voltage - Supply

    Voltage - Supply refers to the range of voltage levels that an electronic component or circuit is designed to operate with. It indicates the minimum and maximum supply voltage that can be applied for the device to function properly. Providing supply voltages outside this range can lead to malfunction, damage, or reduced performance. This parameter is critical for ensuring compatibility between different components in a circuit.

    1.8V ~ 3.3V
  • Frequency

    In electronic components, the parameter "Frequency" refers to the rate at which a signal oscillates or cycles within a given period of time. It is typically measured in Hertz (Hz) and represents how many times a signal completes a full cycle in one second. Frequency is a crucial aspect in electronic components as it determines the behavior and performance of various devices such as oscillators, filters, and communication systems. Understanding the frequency characteristics of components is essential for designing and analyzing electronic circuits to ensure proper functionality and compatibility with other components in a system.

    161.32813 MHz
  • Frequency Stability

    the variation of output frequency of a crystal oscillator due to external conditions like temperature variation, voltage variation, output load variation, and frequency aging.

    ±20ppm
  • Output

    In electronic components, the parameter "Output" typically refers to the signal or data that is produced by the component and sent to another part of the circuit or system. The output can be in the form of voltage, current, frequency, or any other measurable quantity depending on the specific component. The output of a component is often crucial in determining its functionality and how it interacts with other components in the circuit. Understanding the output characteristics of electronic components is essential for designing and troubleshooting electronic circuits effectively.

    CMOS
  • Function

    The parameter "Function" in electronic components refers to the specific role or purpose that the component serves within an electronic circuit. It defines how the component interacts with other elements, influences the flow of electrical signals, and contributes to the overall behavior of the system. Functions can include amplification, signal processing, switching, filtering, and energy storage, among others. Understanding the function of each component is essential for designing effective and efficient electronic systems.

    Standby (Power Down)
  • Base Resonator

    Base resonator is a component used in electronic circuits to establish a specific resonant frequency. It typically consists of a combination of inductors and capacitors that create a resonant LC circuit. The primary function of a base resonator is to filter signals, allowing certain frequencies to pass while attenuating others. This makes it essential in applications like radio transmitters and receivers where precise frequency selection is critical.

    Crystal
  • Current - Supply (Max)

    The parameter "Current - Supply (Max)" in electronic components refers to the maximum amount of current that a component can draw from a power supply for its operation. This parameter is critical for ensuring that the power supply can adequately meet the demands of the component without causing damage or malfunction. Exceeding this specified maximum current can lead to overheating, reduced performance, or failure of the component. It is essential to consider this value when designing or integrating components into electronic circuits to maintain reliability and functionality.

    6.8mA (Typ)
  • Current - Supply (Disable) (Max)

    The parameter "Current - Supply (Disable) (Max)" refers to the maximum current that an electronic component will draw from the supply when it is in a disabled or inactive state. This parameter is critical for power management, as it helps designers understand the power consumption of the component when it is not performing its primary function. Lower values for this parameter are generally preferred in battery-powered or energy-sensitive applications to minimize power waste.

    1.1µA
  • Number of Channels
    8
  • Spread Spectrum Bandwidth

    In telecommunication and radio communication, spread-spectrum techniques are methods by which a signal (e.g., an electrical, electromagnetic, or acoustic signal) generated with a particular bandwidth is deliberately spread in the frequency domain, resulting in a signal with a wider bandwidth.

    -
  • Input Type

    Input type in electronic components refers to the classification of the signal or data that a component can accept for processing or conversion. It indicates whether the input is analog, digital, or a specific format such as TTL or CMOS. Understanding input type is crucial for ensuring compatibility between different electronic devices and circuits, as it determines how signals are interpreted and interacted with.

    Single-Ended
  • Architecture

    In electronic components, the parameter "Architecture" refers to the overall design and structure of the component. It encompasses the arrangement of internal components, the layout of circuitry, and the physical form of the component. The architecture of an electronic component plays a crucial role in determining its functionality, performance, and compatibility with other components in a system. Different architectures can result in variations in power consumption, speed, size, and other key characteristics of the component. Designers often consider the architecture of electronic components carefully to ensure optimal performance and integration within a larger system.

    SAR
  • Data Interface

    A Data Interface in EDQ is a template of a set of attributes representing a given entity, used to create processes that read from, or write to, interfaces rather than directly from or to sources or targets of data.

    Parallel
  • Resolution

    Resolution in electronic components refers to the smallest increment of measurement or change that can be detected or represented by the component. It is a crucial specification in devices such as sensors, displays, and converters, as it determines the level of detail or accuracy that can be achieved. For example, in a digital camera, resolution refers to the number of pixels that make up an image, with higher resolution indicating a greater level of detail. In analog-to-digital converters, resolution is the number of discrete values that can be represented in the digital output, determining the precision of the conversion process. Overall, resolution plays a significant role in determining the performance and capabilities of electronic components in various applications.

    14 bit
  • Sampling Rate

    often described in the context of signal processing as the number of samples per time.

    250 kS/s
  • Sampling Rate (Per Second)

    The sampling rate (per second) in electronic components refers to the frequency at which an analog signal is measured or sampled to convert it into a digital signal. It is typically expressed in Hertz (Hz) and indicates how many times per second the analog signal is sampled. A higher sampling rate allows for better representation of the original signal, capturing more detail and reducing distortion during the conversion process. In audio applications, for example, common sampling rates include 44.1 kHz for CD-quality audio and 48 kHz for video production.

    250k
  • Voltage Supply Source

    A voltage source is a two-terminal device which can maintain a fixed voltage. An ideal voltage source can maintain the fixed voltage independent of the load resistance or the output current. However, a real-world voltage source cannot supply unlimited current. A voltage source is the dual of a current source.

    Analog and Digital, Dual ±
  • Absolute Pull Range (APR)

    The Absolute Pull Range (APR) is a parameter used in electronic components, particularly in devices such as crystal oscillators and resonators. It refers to the maximum allowable frequency deviation that can occur due to external factors such as temperature variations, voltage fluctuations, or mechanical stress. The APR value indicates the range within which the component can operate reliably without experiencing significant frequency shifts that could affect its performance. Manufacturers specify the APR to ensure that the component meets the required frequency stability under various operating conditions, helping designers select the appropriate component for their application.

    -
  • Resolution (Bits)

    Resolution (Bits) in electronic components refers to the number of bits used to represent the analog signal in digital form. It indicates the level of detail or precision with which the analog signal can be converted into digital data. A higher resolution means more bits are used, allowing for finer distinctions to be made between different signal levels. For example, an 8-bit resolution can represent 256 different levels, while a 16-bit resolution can represent 65,536 levels. In general, a higher resolution leads to better accuracy and fidelity in the digital representation of the original analog signal.

    14 b
  • Height Seated (Max)

    Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.

    0.055 (1.40mm)
  • Ratings

    The parameter "Ratings" in electronic components refers to the specified limits that define the maximum operational capabilities of a component. These ratings include voltage, current, power, temperature, and frequency, determining the conditions under which the component can function safely and effectively. Exceeding these ratings can lead to failure, damage, or unsafe operation, making it crucial for designers to adhere to them during component selection and usage.

    -
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Analog Devices MAX125CEAX+TD.

MAX125CEAX+TD Overview

Package 4-SMD, No Lead includes it.Normal operation should be performed with the working temperature set to -40°C ~ 105°C.There is a possibility that you will be repaid what you paid from the outstanding XO (Standard).This part will save even more space if it is mounted through Surface Mount.As this unit is designed, if your meter does not read a voltage of 1.8V ~ 3.3V, the circuit should be re-built.Due to the deployment of 8 channels, this unit is able to perform complex tasks very efficiently.The SG-8101 series is represented by this unit.The acquisition rate of the part is normally around 161.32813 MHz.

MAX125CEAX+TD Features

Surface Mount acquisition unit
8 channels process

MAX125CEAX+TD Applications

There are a lot of Analog Devices
MAX125CEAX+TD ADCs/DACs applications.


  • Rotary encoder
  • Displaying
  • Transducer
  • Microcontrollers.
  • Digital Storage Oscilloscope
  • Scientific instruments.
  • Music reproduction technology
  • Communication Systems
  • Data Acquisition Systems
  • Handheld Terminal Interface