

CUI Inc UJ2-MBH-3-SMT-TR
Manufacturer No:
UJ2-MBH-3-SMT-TR
Tiny WHSLManufacturer:
Utmel No:
590-UJ2-MBH-3-SMT-TR
Package:
-
Description:
USB JACK 2.0, MINI B TYPE, 5 PIN
Quantity:
Delivery:





Payment:











In Stock : Please Inquire
Please send RFQ , we will respond immediately.
United States
China
Canada
Japan
Russia
Germany
United Kingdom
Singapore
Italy
Hong Kong(China)
Taiwan(China)
France
Korea
Mexico
Netherlands
Malaysia
Austria
Spain
Switzerland
Poland
Thailand
Vietnam
India
United Arab Emirates
Afghanistan
Åland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua & Barbuda
Argentina
Armenia
Aruba
Australia
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius and Saba
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Cayman Islands
Central African Republic
Chad
Chile
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo
Congo (DRC)
Cook Islands
Costa Rica
Côte d’Ivoire
Croatia
Cuba
Curaçao
Cyprus
Czechia
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
French Guiana
French Polynesia
Gabon
Gambia
Georgia
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao(China)
Madagascar
Malawi
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Authority
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Portugal
Puerto Rico
Qatar
Réunion
Romania
Rwanda
Samoa
San Marino
São Tomé & Príncipe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Sudan
Sri Lanka
St Helena, Ascension, Tristan da Cunha
St. Barthélemy
St. Kitts & Nevis
St. Lucia
St. Martin
St. Pierre & Miquelon
St. Vincent & Grenadines
Sudan
Suriname
Svalbard & Jan Mayen
Sweden
Syria
Tajikistan
Tanzania
Timor-Leste
Togo
Tokelau
Tonga
Trinidad & Tobago
Tunisia
Turkey
Turkmenistan
Turks & Caicos Islands
Tuvalu
U.S. Outlying Islands
U.S. Virgin Islands
Uganda
Ukraine
Uruguay
Uzbekistan
Vanuatu
Vatican City
Venezuela
Wallis & Futuna
Yemen
Zambia
Zimbabwe
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Surface Mount, Right Angle - Mounting Feature
a process by which the operating system makes files and directories on a storage device (such as hard drive, CD-ROM, or network share) available for users to access via the computer's file system.
Horizontal - Shell Material
The "Shell Material" parameter in electronic components refers to the material used to encase or cover the internal components of the device. This material is chosen based on various factors such as durability, heat resistance, electrical insulation properties, and environmental considerations. Common shell materials include plastics, metals, and ceramics, each offering different levels of protection and performance characteristics. The choice of shell material can impact the overall reliability, safety, and functionality of the electronic component in different operating conditions.
STEEL - Board Mounting Option
Board Mounting Option refers to the method by which an electronic component is attached or mounted onto a circuit board. There are various board mounting options available, such as surface mount technology (SMT), through-hole mounting, and press-fit mounting. The choice of board mounting option depends on factors such as the type of component, the size of the circuit board, and the intended application. Proper selection of the board mounting option is crucial for ensuring the component's stability, reliability, and performance within the electronic system.
SOLDER HOLDING POSTS - Mounting Option 2
Mounting Option 2 in electronic components refers to a specific method or configuration for attaching or installing the component onto a circuit board or other electronic device. This parameter typically provides details on the physical dimensions, orientation, and connection points required for proper mounting and integration within a larger electronic system. Different mounting options may include surface mount technology (SMT), through-hole mounting, or other specialized techniques depending on the specific component and application requirements. Understanding the mounting option is crucial for ensuring proper assembly, functionality, and reliability of the electronic component within the overall system design.
LOCKING - Shell/Shielding Material
The parameter "Shell/Shielding Material" in electronic components refers to the material used to encase or shield the internal components of the device. This material is chosen based on its ability to protect the internal components from external interference, such as electromagnetic interference (EMI) or radio frequency interference (RFI). Common materials used for shell/shielding include metal alloys like aluminum or copper, as well as conductive plastics or coatings. The choice of shell/shielding material is crucial in ensuring the proper functioning and reliability of the electronic component in various operating environments.
Steel - Voltage Rated
RATED voltage is the voltage on the nameplate - the "design point" for maximum power throughput and safe thermal operation.
30VAC - Body Length0.304 inch
- Insulator MaterialFR52
- Operating Temperature-Min-20 °C
- Operating Temperature-Max85 °C
- Rohs CodeYes
- Manufacturer Part NumberUJ2-MBH-3-SMT-TR
- Mounting StylesRIGHT ANGLE
- Number of Rows Loaded1
- ManufacturerCUI Devices
- Part Life Cycle CodeActive
- Ihs ManufacturerCUI DEVICES
- Number Of ConnectorsONE
- Risk Rank2.27
- Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-20°C ~ 85°C - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
UJ2 - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Tape & Reel (TR) - JESD-609 Code
The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.
e3 - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Termination
Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.
Solder - Connector Type
Connector Type in electronic components refers to the specific design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the physical shape, size, and layout of the connector, as well as the number and arrangement of pins or contacts. Common connector types include USB, HDMI, RJ45, and D-sub connectors, each serving different purposes and applications. Understanding the connector type is crucial for ensuring compatibility and proper functionality when connecting electronic devices together.
USB - mini B - Gender
In the context of electronic components, the parameter "Gender" typically refers to the physical characteristics of connectors or interfaces that determine how they can be mated together. Connectors are often designed with specific gender types, such as male or female, to ensure proper alignment and connection between devices. A male connector typically has protruding pins or plugs that fit into a corresponding female connector, which has receptacles or sockets to receive the pins. This design helps prevent incorrect connections and ensures a secure and reliable electrical connection. Understanding the gender of connectors is crucial when designing or assembling electronic systems to ensure compatibility and proper functionality. It is essential to match the gender of connectors correctly to avoid damage and ensure optimal performance of the electronic components.
Receptacle - Filter Feature
In electronic components, the "Filter Feature" parameter refers to the capability of a component to filter or block certain frequencies of signals while allowing others to pass through. Filters are used to remove unwanted noise or interference from a signal, ensuring that only the desired frequencies are transmitted or received. The filter feature can be implemented using various techniques such as capacitors, inductors, resistors, or active components like operational amplifiers. Different types of filters, such as low-pass, high-pass, band-pass, and band-stop filters, are designed to cater to specific frequency ranges and applications. Overall, the filter feature plays a crucial role in maintaining signal integrity and improving the performance of electronic circuits.
NO - Mixed Contacts
In electronic components, "Mixed Contacts" refers to a type of contact arrangement where different types of contacts are used within the same component. This can include a combination of different contact materials, such as gold-plated contacts for signal transmission and silver-plated contacts for power connections. Mixed contacts can also refer to a combination of different contact styles, such as pin contacts and socket contacts within the same component.The use of mixed contacts allows for optimized performance and reliability in electronic components by leveraging the specific advantages of each contact type. For example, gold-plated contacts offer excellent conductivity and corrosion resistance, while silver-plated contacts provide high current-carrying capacity. By incorporating mixed contacts, manufacturers can tailor the component to meet the specific requirements of the application, ensuring efficient and reliable operation.
NO - OptionGENERAL PURPOSE
- Total Number of Contacts5
- Shielding
Shielding in electronic components refers to the practice of enclosing or surrounding sensitive electronic circuits or components with a conductive material to protect them from electromagnetic interference (EMI) or radio frequency interference (RFI). The shielding material acts as a barrier that blocks or absorbs unwanted electromagnetic signals, preventing them from affecting the performance of the electronic device. Shielding can be achieved using materials such as metal enclosures, conductive coatings, or shielding tapes. Proper shielding is essential in electronic design to ensure the reliable operation of electronic devices in environments where electromagnetic interference is present.
Shielded - Ingress Protection
Ingress Protection rating (or just IP rating), is an international standard (IEC 60529) used to rate the degree of protection or sealing effectiveness in electrical enclosures against intrusion of objects, water, dust or accidental contact. It corresponds to the European standard EN 60529.
-- - Terminal Pitch
The center distance from one pole to the next.
0.8 mm - Reach Compliance Code
Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.
compliant - Current Rating
Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.
1A - Insulation Color
Insulation color in electronic components refers to the specific coloring of the insulating material used in wires, cables, and other components. This color coding serves important functions such as indicating the function of the wire, denoting voltage levels, or providing safety information. Different colors correspond to different standards in various regions, helping users quickly identify wiring types and reduce the risk of errors in assembly or maintenance. It plays a critical role in ensuring proper usage and organization within electrical systems.
Black - Shell Finish
Shell Finish in electronic components refers to the surface treatment or coating applied to the outer shell or casing of the component. This finish is designed to provide protection against environmental factors such as moisture, dust, and corrosion, as well as to enhance the component's appearance. Common types of shell finishes include nickel plating, anodizing, powder coating, and epoxy resin coating. The choice of shell finish depends on the specific requirements of the component, such as the operating environment, durability needs, and aesthetic considerations.
TIN - Reference Standard
In the context of electronic components, the term "Reference Standard" typically refers to a specific set of guidelines, specifications, or requirements that serve as a benchmark for evaluating the quality, performance, and characteristics of the component. These standards are established by organizations such as the International Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers (IEEE), or specific industry bodies.Reference standards help ensure consistency and interoperability among different components, as they provide a common framework for manufacturers, designers, and users to adhere to. They outline parameters such as electrical properties, mechanical dimensions, environmental conditions, and safety considerations that the component must meet to be considered compliant.By referencing these standards, manufacturers can design and produce components that meet industry-recognized criteria, which in turn helps users select the right components for their applications with confidence. Adhering to reference standards also facilitates regulatory compliance and promotes overall quality and reliability in electronic systems.
UL - Contact Finish
Contact finish refers to the surface coating or treatment applied to the electrical contacts of electronic components. This finish is crucial for ensuring reliable electrical connections and preventing corrosion or oxidation of the contacts. Common contact finishes include gold, silver, tin, and nickel, each offering different levels of conductivity, durability, and resistance to environmental factors. The choice of contact finish depends on the specific application requirements, such as operating conditions, cost considerations, and compatibility with other components in the circuit. Selecting the appropriate contact finish is essential for maintaining the performance and longevity of electronic devices.
Gold - Number Of PCB Rows1
- Number of Contacts5
- PCB Contact Pattern
The "PCB Contact Pattern" refers to the layout or arrangement of contact points on a printed circuit board (PCB) where electronic components are mounted or connected. This pattern determines how components will be physically and electrically connected to the PCB. The contact pattern typically includes pads, vias, traces, and other features that facilitate the soldering or mounting of components onto the board. It is crucial for ensuring proper electrical connections and reliable performance of the electronic device. Designing an appropriate PCB contact pattern is essential for the functionality, efficiency, and durability of the electronic components and the overall circuitry.
RECTANGULAR - Body Breadth
Body breadth in electronic components refers to the width of the physical body of a component, such as a resistor, capacitor, or integrated circuit. This measurement is crucial for ensuring proper fit within a circuit board or enclosure. It can affect the component's thermal performance, mechanical stability, and overall compatibility with other components in a design. Body breadth is typically specified in millimeters or inches and is an important factor in the selection and design of electronic assemblies.
0.156 inch - Contact Gender
Contact Gender in electronic components refers to the physical characteristics of the electrical contacts within a connector or terminal block. It indicates whether the contact is male or female, which determines how the connectors can be mated together. Male contacts typically have protruding pins or plugs, while female contacts have receptacles or sockets to receive the male contacts. Matching the correct contact genders is crucial for ensuring proper electrical connections and preventing damage to the components. Manufacturers often specify the contact gender of their components to facilitate compatibility and ease of use in electronic systems.
FEMALE - UL Flammability Code
The UL Flammability Code is a parameter used to indicate the flammability rating of electronic components. It is assigned by Underwriters Laboratories (UL) based on the component's performance in flammability tests. The code consists of a two-letter designation, with the first letter indicating the component's flammability rating and the second letter indicating the component's resistance to ignition. Components with a higher UL Flammability Code are less likely to catch fire or sustain combustion, making them safer for use in electronic devices. It is important to consider the UL Flammability Code when selecting components to ensure compliance with safety standards and regulations.
94V-0 - Empty ShellNO
- Body Depth
Body Depth is a parameter that refers to the physical measurement of the depth or thickness of an electronic component. It is typically measured from the bottom to the top of the component, excluding any external connectors or pins. Body Depth is an important specification as it determines how much space the component will occupy on a circuit board or within an electronic device. Manufacturers provide this measurement to help designers and engineers ensure proper fit and compatibility within their designs. Understanding the Body Depth of electronic components is crucial for efficient and effective integration into electronic systems.
0.386 inch - Rated Current (Signal)
Rated Current (Signal) refers to the maximum continuous current that an electronic component can handle while maintaining its specified performance characteristics. It indicates the level of current that the device can safely operate under normal conditions without overheating or experiencing degradation. This parameter is crucial for ensuring reliability and efficiency in electronic circuits and components, helping to prevent damage due to excessive current.
1 A - Contact Style
The parameter "Contact Style" in electronic components refers to the specific design and arrangement of the contact points that enable electrical connection in various devices. It dictates how components interface with each other, affecting factors such as reliability, durability, and performance. Different contact styles can include configurations like pin, socket, blade, or surface mount, each designed to cater to specific applications and requirements in circuit assembly.
MINI USB AB - Contact Resistance
Contact resistance refers to the resistance encountered at the point of contact between two conductive materials or components. It is a measure of how well the two materials make electrical contact with each other. High contact resistance can lead to voltage drops, power losses, and inefficient electrical connections. It is typically measured in ohms and is an important parameter to consider in electronic components such as connectors, switches, and relays. Lower contact resistance is desirable for ensuring reliable and efficient electrical connections in electronic circuits.
50 mΩ - Insulation Resistance
The measurement of insulation resistance is carried out by means of a megohmmeter – high resistance range ohmmeter. A general rule-of-thumb is 10 Megohm or more.
100000000 Ω - Body/Shell Style
The parameter "Body/Shell Style" in electronic components refers to the physical design or shape of the outer casing or enclosure of the component. It is an important characteristic that helps in identifying and categorizing different types of components based on their form factor. The body/shell style can vary greatly depending on the specific component and its intended use, ranging from simple rectangular shapes to more complex designs with specific features for mounting, connecting, or protecting the internal components. Understanding the body/shell style of electronic components is crucial for proper installation, compatibility, and overall functionality within electronic circuits and systems.
RECEPTACLE - Termination Type
Termination Type in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It specifies how the component's leads or terminals are designed for soldering or mounting onto a PCB. Common termination types include through-hole, surface mount, and wire lead terminations. The termination type is an important consideration when selecting components for a circuit design, as it determines how the component will be physically connected within the circuit. Different termination types offer varying levels of durability, ease of assembly, and suitability for specific applications.
SURFACE MOUNT - Dielectric Withstanding Voltage
Dielectric Withstanding Voltage (DWV) is a crucial parameter in electronic components that measures the maximum voltage a component can withstand without breaking down. It is also known as the insulation voltage or breakdown voltage. DWV is typically tested by applying a high voltage between the conductive parts of the component and the insulation material to ensure that the insulation can withstand the specified voltage without allowing current to flow through. This parameter is important for ensuring the safety and reliability of electronic components, especially in applications where high voltages are present. Components with a higher DWV rating are more suitable for use in high-voltage environments and applications.
100VAC V - Number of Ports
A port is identified for each transport protocol and address combination by a 16-bit unsigned number,.
1 - Durability
Durability in electronic components refers to the ability of a component to withstand various environmental conditions, mechanical stress, and operational factors over an extended period of time without degradation in performance. It is a measure of the component's reliability and longevity in different operating conditions. Factors that can affect the durability of electronic components include temperature fluctuations, humidity, vibration, shock, and electrical stress. Manufacturers often provide durability ratings or specifications to indicate the expected lifespan or performance under specific conditions, helping users select components that meet their durability requirements for a given application. Ensuring the durability of electronic components is crucial for maintaining the overall reliability and functionality of electronic devices.
5000 Cycles - Contact Finish Termination
Contact Finish Termination refers to the final layer of material applied to the electrical contact surfaces of electronic components, which is critical for ensuring reliable electrical connections. It often involves different plating processes such as gold, tin, nickel, or palladium, chosen based on the specific application and environmental conditions. The finish helps prevent oxidation, enhance conductivity, and improve solderability, ultimately influencing the performance and longevity of the connections in electronic devices.
Tin (Sn) - with Nickel (Ni) barrier - Contact Pattern
In electronic components, the "Contact Pattern" refers to the arrangement and design of the contact points on a component, such as a connector or a switch. The contact pattern determines how electrical connections are made between the component and other devices in a circuit. It includes the number, size, spacing, and configuration of the contact points, which can vary depending on the specific application and requirements of the component. A well-designed contact pattern is crucial for ensuring reliable and efficient electrical connections, as it affects factors such as signal integrity, power transmission, and durability of the component. Manufacturers carefully engineer contact patterns to meet the desired performance specifications and standards for the component's intended use.
RECTANGULAR - Mating Cycles
to the number of a times a physical connector can “mate” or connect to it's counterpart.
5000 - Insulator Color
The parameter "Insulator Color" in electronic components refers to the color of the insulating material that surrounds or separates conductive elements within the component. The insulator is a non-conductive material that prevents electrical current from flowing between the conductive elements, ensuring proper functionality and safety of the component. The color of the insulator is often used for visual identification and organization of components in electronic circuits or systems. Different manufacturers may use various colors for insulators to distinguish between different types of components or to indicate specific characteristics such as voltage rating or temperature range.
BLACK - Specifications
a measure of a material's ability to?conduct heat.?
USB 2.0 - Features
In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.
Board Guide, Solder Retention - Plating Thickness
Plating thickness in electronic components refers to the measurement of the thickness of the metal plating applied to various surfaces of the component. This plating is typically done to enhance the component's conductivity, corrosion resistance, and solderability. The plating thickness is an important parameter as it directly affects the performance and reliability of the electronic component. Manufacturers specify the required plating thickness to ensure that the component meets the desired electrical and mechanical properties for its intended application. Testing and quality control measures are often employed to verify that the plating thickness meets the specified requirements.
15u inch - Material Flammability Rating
The Material Flammability Rating is a parameter used to indicate the flammability characteristics of materials used in electronic components. It is typically measured according to standards such as UL94, which classifies materials into different categories based on their flammability properties. The rating helps in assessing the fire safety of electronic devices and components, as materials with higher flammability ratings are more resistant to ignition and combustion. Manufacturers often specify the Material Flammability Rating of their components to ensure compliance with safety regulations and standards. It is important to consider this parameter when designing and selecting electronic components to minimize fire hazards and ensure the overall safety of the end product.
UL94 V-0