Eaton - Electronics Division SDCL1V4030-471M-R
Eaton - Electronics Division SDCL1V4030-471M-R
feed

Eaton - Electronics Division SDCL1V4030-471M-R

Manufacturer No:

SDCL1V4030-471M-R

Utmel No:

718-SDCL1V4030-471M-R

Package:

Nonstandard

ECAD Model:

Description:

IND 470 UH 0.32A SMT

Quantity:

Unit Price: $0.244587

Ext Price: $0.24

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 1366

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $0.244587

    $0.24

  • 10

    $0.230742

    $2.31

  • 100

    $0.217682

    $21.77

  • 500

    $0.205360

    $102.68

  • 1000

    $0.193736

    $193.74

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
SDCL1V4030-471M-R information

Specifications
Eaton - Electronics Division SDCL1V4030-471M-R technical specifications, attributes, parameters and parts with similar specifications to Eaton - Electronics Division SDCL1V4030-471M-R.
  • Type
    Parameter
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    Nonstandard
  • Supplier Device Package

    The parameter "Supplier Device Package" in electronic components refers to the physical packaging or housing of the component as provided by the supplier. It specifies the form factor, dimensions, and layout of the component, which are crucial for compatibility and integration into electronic circuits and systems. The supplier device package information typically includes details such as the package type (e.g., DIP, SOP, QFN), number of pins, pitch, and overall size, allowing engineers and designers to select the appropriate component for their specific application requirements. Understanding the supplier device package is essential for proper component selection, placement, and soldering during the manufacturing process to ensure optimal performance and reliability of the electronic system.

    -
  • Core Material

    Core materials are produced in a variety of forms including end-grain balsa wood, PVC foam, urethane foam, non-woven core fabrics, and various types of honeycomb materials.

    Ferrite
  • Mfr
    Eaton - Electronics Division
  • Package
    Tape & Reel (TR)
  • Product Status
    Active
  • Material-Core
    Ferrite
  • Current - Saturation (Isat)
    320mA
  • Frequency-Self-Resonant
    -
  • Inductance Frequency-Test
    100 kHz
  • Maximum DC Current
    170 mA
  • Case Code - mm
    4030
  • Maximum Operating Temperature

    the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    + 125 C
  • Minimum Operating Temperature
    - 40 C
  • Mounting Styles
    PCB Mount
  • Maximum DC Resistance
    8.3 Ohms
  • Q Minimum
    -
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    SDCL1V40
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C ~ 125°C
  • Size / Dimension

    In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.

    0.157" L x 0.157" W (4.00mm x 4.00mm)
  • Tolerance

    In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.

    ±20%
  • Termination

    Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.

    Standard
  • Type
    -
  • Applications

    The parameter "Applications" in electronic components refers to the specific uses or functions for which a component is designed. It encompasses various fields such as consumer electronics, industrial automation, telecommunications, automotive, and medical devices. Understanding the applications helps in selecting the right components for a particular design based on performance, reliability, and compatibility requirements. This parameter also guides manufacturers in targeting their products to relevant markets and customer needs.

    High Current
  • Subcategory
    Inductors, Chokes & Coils
  • Current Rating (Amps)

    The parameter "Current Rating (Amps)" in electronic components refers to the maximum amount of electrical current that the component can safely handle without being damaged. It is typically measured in amperes (A) and is an important specification to consider when designing or selecting components for a circuit. Exceeding the current rating of a component can lead to overheating, malfunction, or even failure of the component. It is crucial to ensure that the current rating of a component matches the requirements of the circuit to prevent any potential issues and ensure reliable operation.

    170 mA
  • Shielding

    Shielding in electronic components refers to the practice of enclosing or surrounding sensitive electronic circuits or components with a conductive material to protect them from electromagnetic interference (EMI) or radio frequency interference (RFI). The shielding material acts as a barrier that blocks or absorbs unwanted electromagnetic signals, preventing them from affecting the performance of the electronic device. Shielding can be achieved using materials such as metal enclosures, conductive coatings, or shielding tapes. Proper shielding is essential in electronic design to ensure the reliable operation of electronic devices in environments where electromagnetic interference is present.

    Semi-Shielded
  • Termination Style

    "Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.

    SMD/SMT
  • Inductance

    Inductance is a property of an electrical component that quantifies its ability to store energy in a magnetic field when electric current flows through it. It is measured in henries and indicates how much voltage is induced in the component as a result of a change in current. Inductance is an essential characteristic in coils, inductors, and transformers, affecting the behavior of electrical circuits, particularly in alternating current applications. Higher inductance values usually correlate with larger coils or more turns of wire in the component.

    470 μH
  • Test Frequency

    a statistical procedure for assessing data that contain counts or the numbers of occurrences of various categories or classes.

    100 kHz
  • DC Resistance (DCR)

    DC Resistance (DCR) is a measure of the resistance of an electronic component when a direct current (DC) is applied. It quantifies how much opposition the component presents to the flow of electrical current under steady-state conditions. DCR is crucial for understanding power loss, heating, and efficient performance in circuits, as it affects the overall behavior of components such as inductors, transformers, and resistors. Lower DCR values typically indicate better efficiency and performance in a given application.

    8.3Ohm Max
  • Q @ Freq

    Q @ Freq is a parameter used to describe the quality factor of an electronic component at a specific frequency. The quality factor, or Q factor, is a measure of the efficiency of an electronic component in storing and releasing energy. A higher Q factor indicates lower energy losses and better performance. By specifying the Q factor at a particular frequency, manufacturers provide valuable information about the component's performance characteristics under specific operating conditions. Designers can use this information to select components that meet their requirements for efficiency and performance in their electronic circuits.

    -
  • Product Type

    a group of products which fulfill a similar need for a market segment or market as a whole.

    Power Inductors - SMD
  • Core Type

    Core type in electronic components refers to the material and shape used in the core of inductors, transformers, and other magnetic devices. It significantly affects the device's magnetic properties, efficiency, and frequency response. Common core types include ferrite, iron, and air cores, each with distinct characteristics suitable for specific applications. The choice of core type impacts factors such as inductance, saturation level, and operational bandwidth.

    Thin Film
  • Product

    In the context of electronic components, the parameter "Product" typically refers to the specific item or device being discussed or analyzed. It can refer to a physical electronic component such as a resistor, capacitor, transistor, or integrated circuit. The product parameter may also encompass more complex electronic devices like sensors, displays, microcontrollers, or communication modules.Understanding the product parameter is crucial in electronics as it helps identify the characteristics, specifications, and functionality of the component or device in question. This information is essential for selecting the right components for a circuit design, troubleshooting issues, or comparing different products for a particular application. Manufacturers often provide detailed product datasheets that outline key specifications, performance characteristics, and application guidelines to assist engineers and designers in utilizing the component effectively.

    Power Inductors
  • Saturation Current

    Saturation current is the maximum current that flows through a diode when it is in the forward-biased condition, and additional increases in voltage do not lead to significant increases in current. It represents the point where all available carriers have been used for conduction, and further increases in voltage only result in a minimal change in current. In transistors, saturation current refers to the collector current in a saturated state, where the transistor is fully ON and providing the maximum amplification of input signals. This parameter is crucial for understanding the behavior of semiconductor devices in various operating conditions.

    320 mA
  • Features

    In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.

    -
  • Height Seated (Max)

    Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.

    0.118" (3.00mm)
  • Width
    4 mm
  • Height
    3 mm
  • Length
    4 mm
  • Diameter

    In electronic components, the parameter "Diameter" typically refers to the measurement of the width of a circular component, such as a resistor, capacitor, or inductor. It is a crucial dimension that helps determine the physical size and fit of the component within a circuit or on a circuit board. The diameter is usually measured in millimeters (mm) or inches (in) and is important for ensuring proper placement and soldering of the component during assembly. Understanding the diameter of electronic components is essential for selecting the right size for a specific application and ensuring compatibility with other components and the overall design of the circuit.

    -
  • Ratings

    The parameter "Ratings" in electronic components refers to the specified limits that define the maximum operational capabilities of a component. These ratings include voltage, current, power, temperature, and frequency, determining the conditions under which the component can function safely and effectively. Exceeding these ratings can lead to failure, damage, or unsafe operation, making it crucial for designers to adhere to them during component selection and usage.

    -
0 Similar Products Remaining