HARTING 09060482906
HARTING 09060482906
feed

HARTING 09060482906

Manufacturer No:

09060482906

Manufacturer:

HARTING

Utmel No:

1052-09060482906

Package:

-

ECAD Model:

Description:

Conn DIN 41612 F 48 POS 5.08mm Crimp ST Cable Mount

Quantity:

Unit Price: $13.729839

Ext Price: $13.73

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 20

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $13.729839

    $13.73

  • 10

    $12.952678

    $129.53

  • 100

    $12.219508

    $1,221.95

  • 500

    $11.527838

    $5,763.92

  • 1000

    $10.875319

    $10,875.32

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
09060482906 information

Specifications
Documents & Media
Product Details
Product Comparison
HARTING 09060482906 technical specifications, attributes, parameters and parts with similar specifications to HARTING 09060482906.
  • Type
    Parameter
  • Factory Lead Time
    4 Weeks
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Panel
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Panel Mount
  • Number of Pins
    48
  • Housing Material

    The parameter "Housing Material" in electronic components refers to the material used to encase or protect the internal circuitry of the component. The housing material plays a crucial role in providing physical protection, insulation, and environmental resistance to the electronic component. Common housing materials include plastics, metals, ceramics, and composites, each offering different levels of durability, heat resistance, and electrical properties. The choice of housing material is important in determining the overall performance, reliability, and longevity of the electronic component in various operating conditions.

    Glass fibre
  • Material - Insulation

    Material - Insulation is a parameter that refers to the type of material used to provide insulation in electronic components. Insulation is crucial in electronic devices to prevent electrical current from flowing where it is not intended to go, thus avoiding short circuits and other potential hazards. The material used for insulation can vary depending on the specific requirements of the component, such as temperature resistance, dielectric strength, and environmental factors. Common insulation materials include plastics, ceramics, and various types of coatings designed to provide reliable and effective insulation in electronic components.

    Thermoplastic, Glass Filled
  • Cable Types
    WIRE, DISCRETE
  • Voltage Rated

    RATED voltage is the voltage on the nameplate - the "design point" for maximum power throughput and safe thermal operation.

    125V
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Bulk
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    DIN 41612
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    yes
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Termination

    Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.

    Crimp
  • Connector Type

    Connector Type in electronic components refers to the specific design and configuration of the connector used to establish electrical connections between different devices or components. This parameter describes the physical shape, size, and layout of the connector, as well as the number and arrangement of pins or contacts. Common connector types include USB, HDMI, RJ45, and D-sub connectors, each serving different purposes and applications. Understanding the connector type is crucial for ensuring compatibility and proper functionality when connecting electronic devices together.

    Header, Male Pins
  • Number of Positions
    48 (Power)
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    125°C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    -55°C
  • Number of Rows
    3
  • Gender

    In the context of electronic components, the parameter "Gender" typically refers to the physical characteristics of connectors or interfaces that determine how they can be mated together. Connectors are often designed with specific gender types, such as male or female, to ensure proper alignment and connection between devices. A male connector typically has protruding pins or plugs that fit into a corresponding female connector, which has receptacles or sockets to receive the pins. This design helps prevent incorrect connections and ensures a secure and reliable electrical connection. Understanding the gender of connectors is crucial when designing or assembling electronic systems to ensure compatibility and proper functionality. It is essential to match the gender of connectors correctly to avoid damage and ensure optimal performance of the electronic components.

    Male
  • MIL Conformance

    MIL Conformance refers to the compliance of electronic components with military standards set by the Department of Defense. These standards define rigorous requirements for reliability, performance, and durability under extreme conditions. Components that meet MIL Conformance are often used in defense, aerospace, and other critical applications where failure is not an option. Adherence to these standards ensures that the components can withstand harsh environments, such as extreme temperatures, vibrations, and humidity.

    NO
  • DIN Conformance

    DIN Conformance refers to the compliance of an electronic component with the standards set by the Deutsches Institut für Normung (DIN), which is the German Institute for Standardization. DIN standards cover a wide range of technical specifications and requirements for various products, including electronic components. When a component is labeled as DIN-conformant, it means that it meets the specific criteria outlined by DIN for factors such as dimensions, materials, performance, and safety. Ensuring DIN conformance helps to guarantee interoperability, quality, and reliability of electronic components in various applications and industries. Manufacturers often adhere to DIN standards to demonstrate the quality and reliability of their products to customers and to ensure compatibility with other DIN-compliant devices.

    YES
  • IEC Conformance

    IEC Conformance refers to the compliance of electronic components with standards set by the International Electrotechnical Commission (IEC). These standards ensure that the components meet specific safety, performance, and interoperability criteria. Adhering to IEC conformance helps manufacturers produce reliable and compatible products, facilitating international trade and promoting consumer safety. Components that conform to IEC standards are often preferred in global markets due to their quality assurance and regulatory acceptance.

    NO
  • Filter Feature

    In electronic components, the "Filter Feature" parameter refers to the capability of a component to filter or block certain frequencies of signals while allowing others to pass through. Filters are used to remove unwanted noise or interference from a signal, ensuring that only the desired frequencies are transmitted or received. The filter feature can be implemented using various techniques such as capacitors, inductors, resistors, or active components like operational amplifiers. Different types of filters, such as low-pass, high-pass, band-pass, and band-stop filters, are designed to cater to specific frequency ranges and applications. Overall, the filter feature plays a crucial role in maintaining signal integrity and improving the performance of electronic circuits.

    NO
  • Mixed Contacts

    In electronic components, "Mixed Contacts" refers to a type of contact arrangement where different types of contacts are used within the same component. This can include a combination of different contact materials, such as gold-plated contacts for signal transmission and silver-plated contacts for power connections. Mixed contacts can also refer to a combination of different contact styles, such as pin contacts and socket contacts within the same component.The use of mixed contacts allows for optimized performance and reliability in electronic components by leveraging the specific advantages of each contact type. For example, gold-plated contacts offer excellent conductivity and corrosion resistance, while silver-plated contacts provide high current-carrying capacity. By incorporating mixed contacts, manufacturers can tailor the component to meet the specific requirements of the application, ensuring efficient and reliable operation.

    NO
  • Option
    GENERAL PURPOSE
  • Pitch

    In electronic components, "Pitch" refers to the distance between the center of one pin or lead to the center of the adjacent pin or lead on a component, such as an integrated circuit (IC) or a connector. It is a crucial parameter as it determines the spacing and alignment of the pins or leads on a component, which in turn affects how the component can be mounted on a circuit board or connected to other components.The pitch measurement is typically expressed in millimeters (mm) or inches (in) and plays a significant role in determining the overall size and layout of a circuit board. Components with different pitches may require specific types of circuit boards or connectors to ensure proper alignment and connection. Designers must carefully consider the pitch of components when designing circuit layouts to ensure compatibility and proper functionality of the electronic system.

    0.200 5.08mm
  • Total Number of Contacts
    48
  • Orientation

    In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.

    Straight
  • Depth

    In electronic components, "Depth" typically refers to the measurement of the distance from the front to the back of the component. It is an important parameter to consider when designing or selecting components for a project, as it determines how much space the component will occupy within a circuit or device. The depth of a component can impact the overall size and layout of the circuit board or enclosure in which it will be installed. It is usually specified in millimeters or inches and is crucial for ensuring proper fit and functionality within the intended application.

    37.7mm
  • Style

    In the context of electronic components, the parameter "Style" typically refers to the physical design or form factor of the component. This includes the shape, size, and layout of the component, as well as any specific features that distinguish it from other components. Different styles of components are often designed to fit specific applications or requirements, such as surface mount components for compact circuit board designs or through-hole components for more robust connections. Understanding the style of a component is important for selecting the right part for a particular electronic design and ensuring compatibility with other components and the overall system.

    F
  • Number of Positions Loaded
    All
  • Current Rating

    Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.

    6A
  • Reference Standard

    In the context of electronic components, the term "Reference Standard" typically refers to a specific set of guidelines, specifications, or requirements that serve as a benchmark for evaluating the quality, performance, and characteristics of the component. These standards are established by organizations such as the International Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers (IEEE), or specific industry bodies.Reference standards help ensure consistency and interoperability among different components, as they provide a common framework for manufacturers, designers, and users to adhere to. They outline parameters such as electrical properties, mechanical dimensions, environmental conditions, and safety considerations that the component must meet to be considered compliant.By referencing these standards, manufacturers can design and produce components that meet industry-recognized criteria, which in turn helps users select the right components for their applications with confidence. Adhering to reference standards also facilitates regulatory compliance and promotes overall quality and reliability in electronic systems.

    UL, CSA
  • Reliability

    Reliability in electronic components refers to the ability of a component to perform its required functions under stated conditions for a specified period of time. It is a measure of the likelihood that a component will not fail during its intended lifespan. High reliability indicates that the component is less likely to experience unexpected failures, which is crucial for maintaining the overall performance and safety of electronic systems. Factors affecting reliability include material quality, manufacturing processes, and environmental conditions.

    COMMERCIAL
  • UL Flammability Code

    The UL Flammability Code is a parameter used to indicate the flammability rating of electronic components. It is assigned by Underwriters Laboratories (UL) based on the component's performance in flammability tests. The code consists of a two-letter designation, with the first letter indicating the component's flammability rating and the second letter indicating the component's resistance to ignition. Components with a higher UL Flammability Code are less likely to catch fire or sustain combustion, making them safer for use in electronic devices. It is important to consider the UL Flammability Code when selecting components to ensure compliance with safety standards and regulations.

    94V-0
  • Empty Shell
    YES
  • Contact Resistance

    Contact resistance refers to the resistance encountered at the point of contact between two conductive materials or components. It is a measure of how well the two materials make electrical contact with each other. High contact resistance can lead to voltage drops, power losses, and inefficient electrical connections. It is typically measured in ohms and is an important parameter to consider in electronic components such as connectors, switches, and relays. Lower contact resistance is desirable for ensuring reliable and efficient electrical connections in electronic circuits.

    20mOhm
  • Max Current Rating

    The "Max Current Rating" parameter in electronic components refers to the maximum amount of electrical current that the component can safely handle without being damaged. It is an important specification to consider when designing or selecting components for a circuit, as exceeding the maximum current rating can lead to overheating, malfunction, or even permanent damage to the component. The max current rating is typically provided in amperes (A) and is determined by the component's internal construction, materials used, and thermal characteristics. It is crucial to ensure that the current flowing through the component does not exceed this specified limit to maintain the component's reliability and longevity.

    6A
  • Polarization Key

    Polarization Key is a design feature in electronic components, particularly connectors and integrated circuits, that ensures proper alignment and orientation during connection. It typically consists of physical notches or protrusions that prevent incorrect insertion, thereby protecting against potential damage and ensuring optimal performance. The key helps maintain consistent polarity, which is crucial in applications such as audio equipment, power supplies, and signal processing devices.

    POLARIZED HOUSING
  • Contact Design

    Contact design in electronic components refers to the specific configuration and layout of the electrical contacts within a component. These contacts are the points where electrical connections are made between different components or circuits. The design of these contacts is crucial for ensuring reliable and efficient electrical connections, as well as for determining factors such as signal integrity, power transmission, and overall performance of the component. Contact design considerations may include the material used for the contacts, the shape and size of the contact points, the spacing between contacts, and the overall layout of the contacts within the component. A well-designed contact system can help minimize signal loss, reduce electrical resistance, and improve the overall functionality and longevity of the electronic component.

    PREASSEM CONN
  • Level, Class

    The parameter "Level, Class" in electronic components typically refers to the categorization or classification of the component based on its performance characteristics, quality, or specifications. This classification helps users understand the capabilities and limitations of the component and aids in selecting the right component for a specific application. The level or class designation may indicate factors such as operating voltage range, temperature range, speed, power handling capacity, or other relevant attributes. It is important to refer to the datasheet or specifications provided by the manufacturer to determine the specific meaning and implications of the "Level, Class" parameter for a particular electronic component.

    1
  • Name of Rows Loaded

    Name of Rows Loaded is a parameter in electronic components that refers to the specific rows of data that have been successfully loaded or transferred within a system or device. This parameter is commonly used in data processing and storage applications to track and monitor the progress of loading data from one location to another. By keeping track of the name of rows loaded, users can ensure that the correct data is being transferred and that any potential errors or issues can be identified and addressed promptly. Monitoring this parameter helps maintain data integrity and accuracy throughout the loading process, ensuring that the system operates efficiently and effectively.

    ZZ,BB,DD
  • Length
    94.8mm
  • Material Flammability Rating

    The Material Flammability Rating is a parameter used to indicate the flammability characteristics of materials used in electronic components. It is typically measured according to standards such as UL94, which classifies materials into different categories based on their flammability properties. The rating helps in assessing the fire safety of electronic devices and components, as materials with higher flammability ratings are more resistant to ignition and combustion. Manufacturers often specify the Material Flammability Rating of their components to ensure compliance with safety regulations and standards. It is important to consider this parameter when designing and selecting electronic components to minimize fire hazards and ensure the overall safety of the end product.

    UL94 V-0
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Flammability Rating

    The Flammability Rating of electronic components refers to the material's ability to resist catching fire or burning when exposed to heat or flames. It is an important safety consideration in electronic design and manufacturing, especially for components that may be used in environments where fire hazards are a concern. The rating is typically expressed using a standardized scale, such as UL94, which classifies materials based on their flammability characteristics. Components with higher flammability ratings are more resistant to ignition and contribute to overall fire safety in electronic devices. It is crucial to select components with appropriate flammability ratings to ensure the reliability and safety of electronic products.

    UL94 V-0
0 Similar Products Remaining
Download datasheets and manufacturer documentation for HARTING 09060482906.

Product Description

Description: The HARTING 09060482906 is a high-quality, DIN 41612 compliant backplane connector designed for reliable and efficient interconnect solutions. This male header connector features 48 pre-assembled contacts, ensuring a robust connection with minimal contact resistance of 20mOhm. Constructed from glass fiber-reinforced thermoplastic, it offers excellent mechanical strength and thermal stability.

Features: - Connector Type: Header, Male Pins - Contact Design: Pre-assembled connections for ease of use - Contact Resistance: 20mOhm for low signal loss - Current Rating: 6A, suitable for high-current applications - DIN Conformance: Meets DIN 41612 standards - Depth: 37.7mm, providing ample space for mounting - Empty Shell: Available with an empty shell option - Flammability Rating: UL94 V-0, ensuring safety in high-temperature environments - Gender: Male, compatible with female connectors - Housing Material: Glass fiber-reinforced thermoplastic for durability - IEC Conformance: Not IEC compliant - Length: 94.8mm, suitable for various mounting configurations - Level, Class: Class 1, indicating commercial reliability - Material - Insulation: Thermoplastic, glass filled for insulation and strength - Material Flammability Rating: UL94 V-0 - Max Current Rating: 6A - Max Operating Temperature: 125°C - Min Operating Temperature: -55°C - Moisture Sensitivity Level (MSL): 1 (Unlimited), suitable for various environments - Mount: Panel mountable - Mounting Type: Panel mount - Name of Rows Loaded: ZZ, BB, DD - Number of Pins: 48 - Number of Positions: 48 (Power) - Number of Positions Loaded: All - Number of Rows: 3 - Option: General purpose - Orientation: Straight - Packaging: Bulk packaging for easy handling - Part Status: Active production status - Pbfree Code: Yes, lead-free compliant - Pitch: 0.2005mm or 5.08mm pitch options available - Polarization Key: Polarized housing ensures correct orientation - Reference Standard: UL and CSA compliant - Reliability: Commercial reliability level - RoHS Status: ROHS3 compliant for environmental safety - Series: DIN 41612 series connectors - Style: Style F connectors - Termination: Crimp termination method

Applications

Primary Applications: 1. Industrial Automation: Ideal for use in industrial automation systems where high reliability and durability are crucial. 2. Telecommunications: Suitable for telecommunications equipment requiring robust connections. 3. Medical Devices: Used in medical devices where safety and reliability are paramount.

Secondary Applications: 1. Aerospace: Can be used in aerospace applications where high-temperature resistance is necessary. 2. Automotive Electronics: Suitable for automotive electronics requiring high current ratings.

Alternative Parts

If you are looking for alternative parts with similar specifications, consider the following options:

  1. HARTING 09060482907: A variant with slightly different dimensions but similar performance characteristics.
  2. TE Connectivity 1-645113-1: A competitor product offering similar features but with different contact designs.

Embedded Modules

This component is commonly used in various embedded modules including:

  1. Industrial Control Systems: Integrated into industrial control systems for reliable data transmission.
  2. Embedded Computing Platforms: Used in embedded computing platforms requiring high-speed interconnects.
  3. Automated Test Equipment: Incorporated into automated test equipment for precise measurement and control.

The HARTING 09060482906 backplane connector offers a robust solution for demanding applications, ensuring reliable performance across a wide range of operating conditions.

The three parts on the right have similar specifications to HARTING & 09060482906.
09060482906 Relevant information

Hot Sale
Related Categories
Similar Products
Popular Search
Related Products
The following parts include "09060482906" in HARTING 09060482906.
  • Part Number
  • Manufacturer
  • Package
  • Description