Linear Technology/Analog Devices LT3022IDHC#PBF
Linear Technology/Analog Devices LT3022IDHC#PBF
LT3022 Datasheet Outline Dimensions_1
LT3022 Datasheet Outline Dimensions_2
LT3022 Datasheet Outline Dimensions_3
LT3022 Datasheet Outline Dimensions_4
LT3022 Datasheet  Pinout Diagram_1
feed

Linear Technology/Analog Devices LT3022IDHC#PBF

Adjustable 16-WFDFN Exposed Pad Tube Regulator IC 16

Manufacturer No:

LT3022IDHC#PBF

Utmel No:

153-LT3022IDHC#PBF

Package:

16-WFDFN Exposed Pad

ECAD Model:

Description:

Enable Adjustable 0.5mm LT3022 PMIC 16 16-WFDFN Exposed Pad

Quantity:

Unit Price: $10.922257

Ext Price: $10.92

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 4998

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $10.922257

    $10.92

  • 10

    $10.304016

    $103.04

  • 100

    $9.720770

    $972.08

  • 500

    $9.170538

    $4,585.27

  • 1000

    $8.651451

    $8,651.45

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
LT3022IDHC#PBF information

Specifications
Documents & Media
Product Details
Linear Technology/Analog Devices LT3022IDHC#PBF technical specifications, attributes, parameters and parts with similar specifications to Linear Technology/Analog Devices LT3022IDHC#PBF.
  • Type
    Parameter
  • Factory Lead Time
    8 Weeks
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    16-WFDFN Exposed Pad
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    YES
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~125°C
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tube
  • Published
    2012
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    16
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Matte Tin (Sn)
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    DUAL
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    NO LEAD
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    NOT SPECIFIED
  • Number of Functions
    1
  • Terminal Pitch

    The center distance from one pole to the next.

    0.5mm
  • Time@Peak Reflow Temperature-Max (s)

    Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.

    NOT SPECIFIED
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    LT3022
  • Pin Count

    a count of all of the component leads (or pins)

    16
  • Current - Supply (Max)

    The parameter "Current - Supply (Max)" in electronic components refers to the maximum amount of current that a component can draw from a power supply for its operation. This parameter is critical for ensuring that the power supply can adequately meet the demands of the component without causing damage or malfunction. Exceeding this specified maximum current can lead to overheating, reduced performance, or failure of the component. It is essential to consider this value when designing or integrating components into electronic circuits to maintain reliability and functionality.

    36mA
  • Number of Outputs
    1
  • Qualification Status

    An indicator of formal certification of qualifications.

    Not Qualified
  • Voltage - Input (Max)

    Voltage - Input (Max) is a parameter in electronic components that specifies the maximum voltage that can be safely applied to the input of the component without causing damage. This parameter is crucial for ensuring the proper functioning and longevity of the component. Exceeding the maximum input voltage can lead to electrical overstress, which may result in permanent damage or failure of the component. It is important to carefully adhere to the specified maximum input voltage to prevent any potential issues and maintain the reliability of the electronic system.

    10V
  • Output Type

    The "Output Type" parameter in electronic components refers to the type of signal or data that is produced by the component as an output. This parameter specifies the nature of the output signal, such as analog or digital, and can also include details about the voltage levels, current levels, frequency, and other characteristics of the output signal. Understanding the output type of a component is crucial for ensuring compatibility with other components in a circuit or system, as well as for determining how the output signal can be utilized or processed further. In summary, the output type parameter provides essential information about the nature of the signal that is generated by the electronic component as its output.

    Adjustable
  • Output Configuration

    Output Configuration in electronic components refers to the arrangement or setup of the output pins or terminals of a device. It defines how the output signals are structured and how they interact with external circuits or devices. The output configuration can determine the functionality and compatibility of the component in a circuit design. Common types of output configurations include single-ended, differential, open-drain, and push-pull configurations, each serving different purposes and applications in electronic systems. Understanding the output configuration of a component is crucial for proper integration and operation within a circuit.

    Positive
  • Control Features

    Control features in electronic components refer to specific functionalities or characteristics that allow users to manage and regulate the operation of the component. These features are designed to provide users with control over various aspects of the component's performance, such as adjusting settings, monitoring parameters, or enabling specific modes of operation. Control features can include options for input/output configurations, power management, communication protocols, and other settings that help users customize and optimize the component's behavior according to their requirements. Overall, control features play a crucial role in enhancing the flexibility, usability, and performance of electronic components in various applications.

    Enable
  • Voltage - Output (Min/Fixed)

    Voltage - Output (Min/Fixed) refers to the minimum fixed output voltage level that an electronic component, such as a voltage regulator or power supply, is designed to provide under specified load conditions. This parameter ensures that the device consistently delivers a reliable voltage that meets the requirements of the connected circuits or components. It is critical for applications where stable and predictable voltage is necessary for proper operation.

    0.2V
  • Number of Regulators

    A regulator is a mechanism or device that controls something such as pressure, temperature, or fluid flow. The voltage regulator keeps the power level stabilized. A regulator is a mechanism or device that controls something such as pressure, temperature, or fluid flow.

    1
  • Protection Features

    Protection features in electronic components refer to the built-in mechanisms or functionalities designed to safeguard the component and the overall system from various external factors or internal faults. These features are crucial for ensuring the reliability, longevity, and safety of the electronic device. Common protection features include overvoltage protection, overcurrent protection, reverse polarity protection, thermal protection, and short-circuit protection. By activating these features when necessary, the electronic component can prevent damage, malfunctions, or hazards that may arise from abnormal operating conditions or unforeseen events. Overall, protection features play a vital role in enhancing the robustness and resilience of electronic components in diverse applications.

    Over Current, Over Temperature, Reverse Polarity
  • Current - Quiescent (Iq)

    The parameter "Current - Quiescent (Iq)" in electronic components refers to the amount of current consumed by a device when it is in a quiescent or idle state, meaning when it is not actively performing any tasks or operations. This parameter is important because it represents the baseline power consumption of the device even when it is not actively being used. A lower quiescent current (Iq) value is desirable as it indicates that the device is more energy-efficient and will consume less power when not in use, which can help extend battery life in portable devices and reduce overall power consumption in electronic systems. Designers often pay close attention to the quiescent current specification when selecting components for low-power applications or battery-operated devices.

    3.5mA
  • Voltage Dropout (Max)

    Voltage Dropout (Max) refers to the minimum voltage difference between the input and output of a voltage regulator or linear power supply needed to maintain proper regulation. It indicates the maximum allowable voltage drop across the device for it to function effectively without dropout. If the input voltage falls below this threshold, the output voltage may drop below the specified level, leading to potential operational issues for connected components. This parameter is critical for ensuring stable and reliable power delivery in electronic circuits.

    0.285V @ 1A
  • PSRR

    PSRR stands for Power Supply Rejection Ratio. It is a measure of how well a device, such as an amplifier or a voltage regulator, can reject variations in the power supply voltage. A high PSRR value indicates that the device is able to maintain its performance even when the power supply voltage fluctuates. This parameter is important in ensuring stable and reliable operation of electronic components, especially in applications where the power supply voltage may not be perfectly regulated. A good PSRR helps to minimize noise and interference in the output signal of the device.

    70dB (120Hz)
  • Dropout Voltage1-Nom

    Dropout Voltage1-Nom is a parameter commonly found in voltage regulators and power management ICs. It refers to the minimum voltage difference required between the input voltage and the output voltage for the regulator to maintain regulation. In other words, it is the minimum voltage drop that the regulator can handle while still providing a stable output voltage. This parameter is important to consider when designing power supply circuits to ensure that the regulator can operate within its specified voltage range and maintain proper regulation under varying load conditions.

    0.145V
  • Output Voltage1-Min

    Output Voltage1-Min is a parameter in electronic components that specifies the minimum acceptable output voltage level that the component can provide under specified operating conditions. This parameter is crucial for ensuring the proper functioning of the component within a circuit or system. It helps designers and engineers determine the reliability and performance of the component in delivering the required voltage output. Meeting or exceeding the specified minimum output voltage ensures that the component operates within its intended range and meets the requirements of the overall system design.

    0.2V
  • Load Regulation-Max(%)

    Load Regulation-Max(%) is a measure of how much the output voltage of a power supply or voltage regulator changes in response to variations in load current. It is expressed as a percentage of the nominal output voltage and indicates the maximum deviation from the set voltage when the load shifts from no load to full load. A lower value of load regulation signifies better performance, as it indicates that the output voltage remains stable under varying load conditions.

    0.5%
  • Length
    5mm
  • Height Seated (Max)

    Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.

    0.8mm
  • Width
    3mm
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Linear Technology/Analog Devices LT3022IDHC#PBF.

Product Description: LT3022IDHC#PBF Linear Voltage Regulator

The LT3022IDHC#PBF is a highly efficient, surface-mount linear voltage regulator from Linear Technology/Analog Devices. This IC is designed to provide a stable and adjustable output voltage, making it ideal for various applications requiring precise voltage regulation.

Features:

  • Enable Control: The LT3022IDHC#PBF features an enable control pin, allowing for flexible power management.
  • Low Quiescent Current: With a quiescent current (Iq) of 3.5mA, this regulator minimizes power consumption in no-load conditions.
  • High Supply Current: The maximum supply current is 36mA, ensuring reliable operation under heavy load conditions.
  • Low Dropout Voltage: The dropout voltage at 1A is 0.285V, providing efficient operation even at low input voltages.
  • High PSRR: The power supply rejection ratio (PSRR) is 70dB at 120Hz, ensuring excellent noise rejection and stability.
  • Protection Features: The IC includes over current, over temperature, and reverse polarity protection features to safeguard against potential faults.
  • RoHS Compliance: The LT3022IDHC#PBF is ROHS3 compliant, adhering to environmental regulations for lead-free soldering.

Applications:

  1. Primary Applications:
  2. Industrial Control Systems: The LT3022IDHC#PBF can be used in industrial control systems where precise voltage regulation is crucial for reliable operation.
  3. Medical Devices: Its high reliability and low noise characteristics make it suitable for medical devices requiring stable power supplies.
  4. Automotive Electronics: The IC's wide operating temperature range (-40°C to 125°C) makes it suitable for automotive applications where temperature variations are significant.

  5. Secondary Applications:

  6. Consumer Electronics: The LT3022IDHC#PBF can be used in consumer electronics such as audio equipment or home appliances where stable power supplies are essential.
  7. Telecommunications: Its high PSRR and low dropout voltage make it suitable for telecommunications equipment requiring minimal noise interference.

Alternative Parts:

If the LT3022IDHC#PBF is not available or suitable for your application, alternative parts include: - LT3021: A similar linear voltage regulator with slightly different specifications but similar functionality. - LT3023: An adjustable linear voltage regulator with additional features like higher output current capability.

Embedded Modules:

The LT3022IDHC#PBF is commonly used in various embedded modules such as: - Microcontroller Boards: It often finds its place in microcontroller boards designed for industrial or medical applications where precise voltage regulation is necessary. - System-on-Chip (SoC) Modules: The IC's compact size and high efficiency make it suitable for integration into SoC modules used in various embedded systems.

In summary, the LT3022IDHC#PBF is a versatile linear voltage regulator that offers excellent performance characteristics, making it an ideal choice for a wide range of applications requiring precise voltage regulation.