Microchip 40C120B
Microchip 40C120B
feed

Microchip 40C120B

Manufacturer No:

40C120B

Manufacturer:

Microchip

Utmel No:

1610-40C120B

Package:

-

ECAD Model:

Description:

Thyristor SCR 1.2KV 1KA 3-Pin TO-65

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
40C120B information

Specifications
Microchip 40C120B technical specifications, attributes, parameters and parts with similar specifications to Microchip 40C120B.
  • Type
    Parameter
  • Surface Mount

    having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.

    NO
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Stud
  • Number of Pins
    3
  • Number of Terminals
    2
  • Manufacturer Part Number
    40C120B
  • Rohs Code
    No
  • Part Life Cycle Code
    Obsolete
  • Ihs Manufacturer
    MICROSEMI CORP
  • Part Package Code
    TO-65
  • Package Description
    POST/STUD MOUNT, O-MUPM-D2
  • Risk Rank
    5.89
  • Number of Elements
    1
  • Operating Temperature-Max
    125 °C
  • Operating Temperature-Min
    -65 °C
  • Package Body Material
    METAL
  • Package Shape
    ROUND
  • Package Style
    POST/STUD MOUNT
  • Reflow Temperature-Max (s)
    NOT SPECIFIED
  • RoHS
    Compliant
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e0
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    No
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    TIN LEAD
  • Max Operating Temperature

    The Maximum Operating Temperature is the maximum body temperature at which the thermistor is designed to operate for extended periods of time with acceptable stability of its electrical characteristics.

    125 °C
  • Min Operating Temperature

    The "Min Operating Temperature" parameter in electronic components refers to the lowest temperature at which the component is designed to operate effectively and reliably. This parameter is crucial for ensuring the proper functioning and longevity of the component, as operating below this temperature may lead to performance issues or even damage. Manufacturers specify the minimum operating temperature to provide guidance to users on the environmental conditions in which the component can safely operate. It is important to adhere to this parameter to prevent malfunctions and ensure the overall reliability of the electronic system.

    -65 °C
  • HTS Code

    HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.

    8541.30.00.80
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    UPPER
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    SOLDER LUG
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    NOT SPECIFIED
  • Reach Compliance Code

    Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.

    unknown
  • Pin Count

    a count of all of the component leads (or pins)

    2
  • JESD-30 Code

    JESD-30 Code refers to a standardized descriptive designation system established by JEDEC for semiconductor-device packages. This system provides a systematic method for generating designators that convey essential information about the package's physical characteristics, such as size and shape, which aids in component identification and selection. By using JESD-30 codes, manufacturers and engineers can ensure consistency and clarity in the specification of semiconductor packages across various applications and industries.

    O-MUPM-D2
  • Qualification Status

    An indicator of formal certification of qualifications.

    Not Qualified
  • Configuration

    The parameter "Configuration" in electronic components refers to the specific arrangement or setup of the components within a circuit or system. It encompasses how individual elements are interconnected and their physical layout. Configuration can affect the functionality, performance, and efficiency of the electronic system, and may influence factors such as signal flow, impedance, and power distribution. Understanding the configuration is essential for design, troubleshooting, and optimizing electronic devices.

    SINGLE
  • Max Repetitive Reverse Voltage (Vrrm)

    The Max Repetitive Reverse Voltage (Vrrm) is a crucial parameter in electronic components, particularly in diodes and transistors. It refers to the maximum voltage that can be applied across the component in the reverse direction without causing damage. This parameter is important for ensuring the proper functioning and longevity of the component in circuits where reverse voltage may be present. Exceeding the Vrrm rating can lead to breakdown and failure of the component, so it is essential to carefully consider this specification when designing or selecting components for a circuit.

    1.2 kV
  • JEDEC-95 Code

    JEDEC-95 Code is a standardized identification system used by the Joint Electron Device Engineering Council to categorize and describe semiconductor devices. This code provides a unique alphanumeric identifier for various memory components, ensuring consistency in documentation and communication across the electronics industry. The format includes information about the type, capacity, and technology of the device, facilitating easier specification and understanding for manufacturers and engineers.

    TO-208AC
  • Hold Current

    the minimum current which must pass through a circuit in order for it to remain in the 'ON' state.

    200 mA
  • Trigger Device Type

    Trigger Device Type is a parameter in electronic components that refers to the type of device or mechanism used to initiate a specific action or function within the component. This parameter specifies the specific trigger device, such as a sensor, switch, or signal input, that is required to activate or control the operation of the component. Understanding the trigger device type is crucial for proper integration and operation of the electronic component within a larger system or circuit. By specifying the appropriate trigger device type, engineers and designers can ensure that the component functions correctly and responds to the intended input signals or conditions.

    SCR
  • Repetitive Peak Off-state Voltage

    The Repetitive Peak Off-state Voltage (Vdrm) is a key parameter in electronic components, particularly in devices like thyristors and triacs. It refers to the maximum voltage that can be applied across the component when it is in the off-state without triggering it to turn on. This parameter is crucial for ensuring the proper functioning and reliability of the component in various circuit applications. It helps determine the voltage level at which the component can safely operate without experiencing unintended conduction. Designers need to consider the Vdrm rating to prevent damage to the component and maintain the overall performance of the circuit.

    1200 V
  • Critical Rate of Rise of Off-State Voltage-Min

    The parameter "Critical Rate of Rise of Off-State Voltage-Min" in electronic components refers to the minimum rate at which the off-state voltage of a device must rise in order to trigger a critical event, such as a breakdown or failure. This parameter is crucial for ensuring the reliable operation of the component under various conditions. It helps determine the maximum allowable rate of voltage increase that the component can withstand without experiencing detrimental effects. Manufacturers specify this parameter to guide engineers and designers in selecting and using the component within its safe operating limits to prevent damage or malfunction. Understanding and adhering to this parameter is essential for maintaining the performance and longevity of electronic devices.

    200 V/us
  • Repetitive Peak Reverse Voltage

    The Repetitive Peak Reverse Voltage (VRRM) is a key parameter in electronic components, particularly in diodes and rectifiers. It refers to the maximum reverse voltage that a component can withstand in repetitive peak reverse polarity conditions without breaking down. This parameter is crucial for ensuring the reliable operation and longevity of the component in circuits where reverse voltage may be present intermittently or periodically. It is important to select a component with a VRRM rating higher than the maximum reverse voltage expected in the circuit to prevent damage or failure.

    1200 V
  • RMS On-state Current-Max

    The parameter "RMS On-state Current-Max" in electronic components refers to the maximum root mean square (RMS) current that the component can handle when it is in the on-state or conducting state. This specification is important for devices such as thyristors, triacs, and other semiconductor switches that are used to control power in various applications. Exceeding the maximum RMS on-state current rating can lead to overheating and potentially damaging the component. Designers must carefully consider this parameter to ensure the component operates within its specified limits for safe and reliable performance.

    63 A
  • Holding Current-Max

    The parameter "Holding Current-Max" in electronic components refers to the maximum current required to maintain the component in its ON state once it has been triggered or turned on. This holding current is necessary to prevent the component from turning off unintentionally due to fluctuations in the input signal or other external factors. It is an important specification for components such as thyristors, triacs, and other semiconductor devices that require a continuous current to remain in the conducting state. Understanding the Holding Current-Max value is crucial for ensuring the reliable operation of the component within its specified parameters.

    200 mA
  • DC Gate Trigger Current-Max

    The parameter "DC Gate Trigger Current-Max" refers to the maximum current required to trigger the gate of a semiconductor device, such as a thyristor or a triac. This parameter specifies the maximum current that must be applied to the gate terminal to turn on the device reliably. Exceeding this maximum current may result in improper operation or damage to the component. It is an important parameter to consider when designing circuits that involve triggering these semiconductor devices, as it ensures proper functionality and reliability of the component.

    100 mA
  • DC Gate Trigger Voltage-Max

    The parameter "DC Gate Trigger Voltage-Max" refers to the maximum voltage required to trigger the gate of a semiconductor device, such as a thyristor or a triac. This voltage level is crucial for initiating the conduction state of the device, allowing current to flow through it. Exceeding this maximum voltage can lead to unintended triggering or damage to the component. Manufacturers specify this parameter to ensure proper operation and reliability of the device in various applications. Designers and engineers need to consider this specification when selecting and using these components in their circuits to prevent malfunctions and ensure optimal performance.

    3 V
  • Circuit Commutated Turn-off Time-Nom

    The parameter "Circuit Commutated Turn-off Time-Nom" in electronic components refers to the nominal time it takes for a circuit to turn off after being commutated. Commutation is the process of transferring current from one circuit to another. This parameter is crucial in power electronics, especially in devices like thyristors and other semiconductor switches, as it affects the efficiency and performance of the circuit. A shorter turn-off time typically indicates faster switching speeds and better overall performance of the electronic component. Manufacturers provide this specification to help engineers and designers select the appropriate components for their specific applications.

    100 µs
  • Repetitive Peak Off-state Leakage Current-Max

    The parameter "Repetitive Peak Off-state Leakage Current-Max" in electronic components refers to the maximum amount of current that flows through the device when it is in the off-state and subjected to repetitive peak voltage stress. This parameter is important for determining the leakage current characteristics of the component, which can impact the overall performance and reliability of the circuit. A lower value for this parameter indicates better isolation and reduced power consumption in the off-state. Designers need to consider this parameter when selecting components for applications where minimizing leakage current is critical.

    6000 µA
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
0 Similar Products Remaining