Microchip Technology HV2761FG-G
Microchip Technology HV2761FG-G
feed

Microchip Technology HV2761FG-G

Interface 0°C~70°C TA Analog Switch 48 Pin

Manufacturer No:

HV2761FG-G

Utmel No:

1610-HV2761FG-G

Package:

48-LQFP

Datasheet:

HV2761

Usage Grade:

  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive

ECAD Model:

Description:

Analog Switch HV2761 48 Pin 48-LQFP

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 44

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
HV2761FG-G information

Specifications
Documents & Media
Product Details
Product Comparison
Microchip Technology HV2761FG-G technical specifications, attributes, parameters and parts with similar specifications to Microchip Technology HV2761FG-G.
  • Type
    Parameter
  • Factory Lead Time
    9 Weeks
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Surface Mount
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    48-LQFP
  • Number of Pins
    48
  • Weight
    181.692094mg
  • Turn Off Delay Time

    It is the time from when Vgs drops below 90% of the gate drive voltage to when the drain current drops below 90% of the load current. It is the delay before current starts to transition in the load, and depends on Rg. Ciss.

    5 μs
  • Usage Level
    Commercial grade
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    0°C~70°C TA
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tray
  • Published
    2013
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    3 (168 Hours)
  • Resistance

    Resistance is a fundamental property of electronic components that measures their opposition to the flow of electric current. It is denoted by the symbol "R" and is measured in ohms (Ω). Resistance is caused by the collisions of electrons with atoms in a material, which generates heat and reduces the flow of current. Components with higher resistance will impede the flow of current more than those with lower resistance. Resistance plays a crucial role in determining the behavior and functionality of electronic circuits, such as limiting current flow, voltage division, and controlling power dissipation.

    26Ohm
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Matte Tin (Sn) - annealed
  • Applications

    The parameter "Applications" in electronic components refers to the specific uses or functions for which a component is designed. It encompasses various fields such as consumer electronics, industrial automation, telecommunications, automotive, and medical devices. Understanding the applications helps in selecting the right components for a particular design based on performance, reliability, and compatibility requirements. This parameter also guides manufacturers in targeting their products to relevant markets and customer needs.

    Ultrasound
  • HTS Code

    HTS (Harmonized Tariff Schedule) codes are product classification codes between 8-1 digits. The first six digits are an HS code, and the countries of import assign the subsequent digits to provide additional classification. U.S. HTS codes are 1 digits and are administered by the U.S. International Trade Commission.

    8542.39.00.01
  • Max Power Dissipation

    The maximum power that the MOSFET can dissipate continuously under the specified thermal conditions.

    1W
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    260
  • Time@Peak Reflow Temperature-Max (s)

    Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.

    40
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    HV2761
  • Number of Channels
    24
  • Max Supply Voltage

    In general, the absolute maximum common-mode voltage is VEE-0.3V and VCC+0.3V, but for products without a protection element at the VCC side, voltages up to the absolute maximum rated supply voltage (i.e. VEE+36V) can be supplied, regardless of supply voltage.

    5.5V
  • Min Supply Voltage

    The minimum supply voltage (V min ) is explored for sequential logic circuits by statistically simulating the impact of within-die process variations and gate-dielectric soft breakdown on data retention and hold time.

    3V
  • Operating Supply Current

    Operating Supply Current, also known as supply current or quiescent current, is a crucial parameter in electronic components that indicates the amount of current required for the device to operate under normal conditions. It represents the current drawn by the component from the power supply while it is functioning. This parameter is important for determining the power consumption of the component and is typically specified in datasheets to help designers calculate the overall power requirements of their circuits. Understanding the operating supply current is essential for ensuring proper functionality and efficiency of electronic systems.

    4.5mA
  • Nominal Supply Current

    Nominal current is the same as the rated current. It is the current drawn by the motor while delivering rated mechanical output at its shaft.

    10μA
  • Max Supply Current

    Max Supply Current refers to the maximum amount of electrical current that a component can draw from its power supply under normal operating conditions. It is a critical parameter that ensures the component operates reliably without exceeding its thermal limits or damaging internal circuitry. Exceeding this current can lead to overheating, performance degradation, or failure of the component. Understanding this parameter is essential for designing circuits that provide adequate power while avoiding overload situations.

    10μA
  • Turn On Delay Time

    Turn-on delay, td(on), is the time taken to charge the input capacitance of the device before drain current conduction can start.

    5 μs
  • Voltage - Supply, Single/Dual (±)

    The parameter "Voltage - Supply, Single/Dual (±)" in electronic components refers to the power supply voltage required for the proper operation of the component. This parameter indicates whether the component requires a single power supply voltage (e.g., 5V) or a dual power supply voltage (e.g., ±15V). For components that require a single power supply voltage, only one voltage level is needed for operation. On the other hand, components that require a dual power supply voltage need both positive and negative voltage levels to function correctly.Understanding the voltage supply requirements of electronic components is crucial for designing and integrating them into circuits to ensure proper functionality and prevent damage due to incorrect voltage levels.

    40V~200V ±40V~160V
  • Supply Type

    Supply Type in electronic components refers to the classification of power sources used to operate the component. It indicates whether the component requires DC or AC power, and if DC, specifies the voltage levels such as low, medium, or high. Different supply types can affect the performance, compatibility, and application of the component in electronic circuits. Understanding the supply type is crucial for proper component selection and integration into electronic designs.

    Dual, Single
  • Max Dual Supply Voltage

    A Dual power supply is a regular direct current power supply. It can provide a positive as well as negative voltage. It ensures stable power supply to the device as well as it helps to prevent system damage.

    200V
  • -3db Bandwidth

    The "-3dB bandwidth" of an electronic component refers to the frequency range over which the component's output signal power is reduced by 3 decibels (dB) compared to its maximum output power. This parameter is commonly used to describe the frequency response of components such as amplifiers, filters, and other signal processing devices. The -3dB point is significant because it represents the half-power point, where the output signal power is reduced to half of its maximum value. Understanding the -3dB bandwidth is important for designing and analyzing electronic circuits to ensure that signals are accurately processed within the desired frequency range.

    50MHz
  • On-State Resistance (Max)

    The "On-State Resistance (Max)" parameter in electronic components refers to the maximum resistance exhibited by the component when it is in the fully conducting state. This resistance is typically measured when the component is carrying the maximum specified current. A lower on-state resistance indicates better conductivity and efficiency of the component when it is in the on-state. It is an important parameter to consider when selecting components for applications where low power dissipation and high efficiency are critical factors.

    26Ohm Typ
  • Min Dual Supply Voltage

    The parameter "Min Dual Supply Voltage" in electronic components refers to the minimum voltage required for the proper operation of a device that uses dual power supplies. Dual power supplies typically consist of a positive and a negative voltage source. The "Min Dual Supply Voltage" specification ensures that both the positive and negative supply voltages are within a certain range to guarantee the device functions correctly. It is important to adhere to this parameter to prevent damage to the component and ensure reliable performance.

    40V
  • Dual Supply Voltage

    Dual Supply Voltage refers to an electronic component's requirement for two separate power supply voltages, typically one positive and one negative. This configuration is commonly used in operational amplifiers, analog circuits, and certain digital devices to allow for greater signal handling capabilities and improved performance. The use of dual supply voltages enables the device to process bipolar signals, thereby enhancing its functionality in various applications.

    100V
  • Multiplexer/Demultiplexer Circuit

    A Multiplexer/Demultiplexer Circuit is an electronic component used in digital circuits to select one of several input signals and route it to a single output. A multiplexer, also known as a "mux," is used to combine multiple input signals into a single output, while a demultiplexer, also known as a "demux," is used to take a single input and route it to one of several possible outputs. These circuits are commonly used in data transmission, communication systems, and digital signal processing applications to efficiently manage and control the flow of data. Multiplexers and demultiplexers play a crucial role in optimizing the use of resources and improving the overall performance of electronic systems.

    1:1
  • Switch Circuit

    establishes connections between links, on demand and as available, in order to establish an end-to-end circuit between devices.

    SPST
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Microchip Technology HV2761FG-G.

HV2761FG-G Overview

It is employed in the way of Tray package.Surface Mount is the recommended mounting type for this part.The device has 24 channels on it.The device is contained within the 48-LQFP package.It is suitable for a wide range of applications, including Ultrasound.It varies the range of 0°C~70°C TA operating temperature.Its base part number is HV2761.48 pins are available on the device.To mount this part with Surface Mount.It can handle a maximum supply voltage of 5.5V.It can handle a minimum supply voltage of 3V.The device resistance should stay within the range of 26Ohm.This part can operate supply current at 4.5mA.Conduct this part under the dual supply voltage of 200V.To ensure stable power, it runs dual supply voltage up to 40V.It has a maximum supply current of 10μA.

HV2761FG-G Features

48-LQFP
Tray
Surface Mount

HV2761FG-G Applications

There are a lot of Microchip Technology
HV2761FG-G Microcontroller applications.
HV2761FG-G MCU is usually applied for Measurement and control field, Consumer electronics products, Network communication, mobile communication, Office automation equipment and computer peripherals, Industrial control Instrumentation and process control, Agriculture, transportation, Navigation control, Network application, Metering & measurement, Day to day life, Safety, Medical instruments and Automobile industry.


  • Computer motherboards
  • Server motherboards
  • Signal decoupling & power bypass
  • To reduce power noise & signal noise
  • To enhance power efficiency
  • Coupling or blocking
  • Smoothing
  • Decoupling or bypassing
  • Noise filtering
  • DC/DC, DC/AC, and AC/AC converters
The three parts on the right have similar specifications to Microchip Technology & HV2761FG-G.
HV2761FG-G Relevant information

Hot Sale
Related Categories
Similar Products
Popular Search
Related Products
The following parts include "HV2761FG-G" in Microchip Technology HV2761FG-G.
  • Part Number
  • Manufacturer
  • Package
  • Description