Microchip Technology MCP6546-I/MS
Microchip Technology MCP6546-I/MS
feed

Microchip Technology MCP6546-I/MS

Linear Comparators Tube 30mA mA 3000 ns μs Linear Comparators

Manufacturer No:

MCP6546-I/MS

Utmel No:

1610-MCP6546-I/MS

Package:

8-TSSOP, 8-MSOP (0.118, 3.00mm Width)

Datasheet:

MCP6546-49

Usage Grade:

  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive
  • Military
  • Aerospace
  • Industrial
  • Commercial
  • Automotive

ECAD Model:

Description:

Surface Mount Tube 30mA mA 3000 ns μs Linear Comparators 1pA pA 2007 1μA μA 7mV mV Surface Mount

Quantity:

Unit Price: $0.583160

Ext Price: $0.58

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 50

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $0.583160

    $0.58

  • 10

    $0.550151

    $5.50

  • 100

    $0.519010

    $51.90

  • 500

    $0.489632

    $244.82

  • 1000

    $0.461917

    $461.92

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
MCP6546-I/MS information

Specifications
Documents & Media
Product Details
Product Comparison
Microchip Technology MCP6546-I/MS technical specifications, attributes, parameters and parts with similar specifications to Microchip Technology MCP6546-I/MS.
  • Type
    Parameter
  • Factory Lead Time
    9 Weeks
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Surface Mount
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    8-TSSOP, 8-MSOP (0.118, 3.00mm Width)
  • Number of Pins
    8
  • Usage Level
    Industrial grade
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~85°C
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tube
  • Published
    2007
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    yes
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    8
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Type
    General Purpose
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Matte Tin (Sn)
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    DUAL
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    GULL WING
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    260
  • Number of Functions
    1
  • Supply Voltage

    Supply voltage refers to the electrical potential difference provided to an electronic component or circuit. It is crucial for the proper operation of devices, as it powers their functions and determines performance characteristics. The supply voltage must be within specified limits to ensure reliability and prevent damage to components. Different electronic devices have specific supply voltage requirements, which can vary widely depending on their design and intended application.

    5V
  • Terminal Pitch

    The center distance from one pole to the next.

    0.65mm
  • Time@Peak Reflow Temperature-Max (s)

    Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.

    40
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    MCP6546
  • Pin Count

    a count of all of the component leads (or pins)

    8
  • Output Type

    The "Output Type" parameter in electronic components refers to the type of signal or data that is produced by the component as an output. This parameter specifies the nature of the output signal, such as analog or digital, and can also include details about the voltage levels, current levels, frequency, and other characteristics of the output signal. Understanding the output type of a component is crucial for ensuring compatibility with other components in a circuit or system, as well as for determining how the output signal can be utilized or processed further. In summary, the output type parameter provides essential information about the nature of the signal that is generated by the electronic component as its output.

    CMOS, Open-Drain, Rail-to-Rail, TTL
  • Operating Supply Voltage

    The voltage level by which an electrical system is designated and to which certain operating characteristics of the system are related.

    5V
  • Number of Circuits
    1
  • Nominal Supply Current

    Nominal current is the same as the rated current. It is the current drawn by the motor while delivering rated mechanical output at its shaft.

    1μA
  • Output Current

    The rated output current is the maximum load current that a power supply can provide at a specified ambient temperature. A power supply can never provide more current that it's rated output current unless there is a fault, such as short circuit at the load.

    30mA
  • Max Supply Current

    Max Supply Current refers to the maximum amount of electrical current that a component can draw from its power supply under normal operating conditions. It is a critical parameter that ensures the component operates reliably without exceeding its thermal limits or damaging internal circuitry. Exceeding this current can lead to overheating, performance degradation, or failure of the component. Understanding this parameter is essential for designing circuits that provide adequate power while avoiding overload situations.

    1μA
  • Propagation Delay

    the flight time of packets over the transmission link and is limited by the speed of light.

    8 μs
  • Quiescent Current

    The quiescent current is defined as the current level in the amplifier when it is producing an output of zero.

    1μA
  • Response Time

    the time taken for a circuit or measuring device, when subjected to a change in input signal, to change its state by a specified fraction of its total response to that change.

    3000 ns
  • Common Mode Rejection Ratio

    Common Mode Rejection Ratio (CMRR) is a measure of the ability of a differential amplifier to reject input signals that are common to both input terminals. It is defined as the ratio of the differential gain to the common mode gain. A high CMRR indicates that the amplifier can effectively eliminate noise and interference that affects both inputs simultaneously, enhancing the fidelity of the amplified signal. CMRR is typically expressed in decibels (dB), with higher values representing better performance in rejecting common mode signals.

    70 dB
  • Voltage - Supply, Single/Dual (±)

    The parameter "Voltage - Supply, Single/Dual (±)" in electronic components refers to the power supply voltage required for the proper operation of the component. This parameter indicates whether the component requires a single power supply voltage (e.g., 5V) or a dual power supply voltage (e.g., ±15V). For components that require a single power supply voltage, only one voltage level is needed for operation. On the other hand, components that require a dual power supply voltage need both positive and negative voltage levels to function correctly.Understanding the voltage supply requirements of electronic components is crucial for designing and integrating them into circuits to ensure proper functionality and prevent damage due to incorrect voltage levels.

    1.6V~5.5V
  • Output Current per Channel

    Output Current per Channel is a specification commonly found in electronic components such as amplifiers, audio interfaces, and power supplies. It refers to the maximum amount of electrical current that can be delivered by each individual output channel of the component. This parameter is important because it determines the capacity of the component to drive connected devices or loads. A higher output current per channel means the component can deliver more power to connected devices, while a lower output current may limit the performance or functionality of the component in certain applications. It is crucial to consider the output current per channel when selecting electronic components to ensure they can meet the power requirements of the intended system or setup.

    2mA
  • Input Offset Voltage (Vos)

    Input Offset Voltage (Vos) is a key parameter in electronic components, particularly in operational amplifiers. It refers to the voltage difference that must be applied between the two input terminals of the amplifier to nullify the output voltage when the input terminals are shorted together. In simpler terms, it represents the voltage required to bring the output of the amplifier to zero when there is no input signal present. Vos is an important parameter as it can introduce errors in the output signal of the amplifier, especially in precision applications where accuracy is crucial. Minimizing Vos is essential to ensure the amplifier operates with high precision and accuracy.

    7mV
  • Power Supply Rejection Ratio (PSRR)

    Power Supply Rejection Ratio (PSRR) is a measure of how well an electronic component, such as an operational amplifier or voltage regulator, can reject changes in its supply voltage. It indicates the ability of the component to maintain a stable output voltage despite fluctuations in the input supply voltage. A higher PSRR value signifies better performance in rejecting noise and variations from the power supply, leading to improved signal integrity and more reliable operation in electronic circuits. PSRR is typically expressed in decibels (dB).

    80dB
  • Supply Voltage Limit-Max

    The parameter "Supply Voltage Limit-Max" in electronic components refers to the maximum voltage that the component can safely handle without getting damaged. This specification is crucial for ensuring the reliable operation and longevity of the component within a given electrical system. Exceeding the maximum supply voltage limit can lead to overheating, electrical breakdown, or permanent damage to the component. It is important to carefully adhere to this limit when designing and operating electronic circuits to prevent potential failures and ensure the overall system's performance and safety.

    7V
  • Input Bias Current

    Input Bias Current refers to the small amount of current that flows into the input terminals of an electronic component, such as an operational amplifier. It is primarily caused by the input impedance of the device and the characteristics of the transistors within it. This current is crucial in determining the accuracy of the analog signal processing, as it can affect the level of voltage offset and signal integrity in the application. In many precise applications, minimizing input bias current is essential to achieve optimal performance.

    1pA
  • Voltage - Input Offset (Max)

    Voltage - Input Offset (Max) is a parameter that refers to the maximum allowable difference in input voltage between two input terminals of an electronic component, such as an operational amplifier, before the output voltage deviates from the expected value. This parameter is crucial in precision applications where accurate voltage amplification or signal processing is required. A higher value for the input offset voltage indicates a greater potential for error in the output signal, so minimizing this parameter is important for maintaining the accuracy and reliability of the component's performance. Designers often take this parameter into consideration when selecting components for circuits that require precise voltage control and signal processing.

    7mV @ 5.5V
  • Current - Input Bias (Max)

    The parameter "Current - Input Bias (Max)" in electronic components refers to the maximum amount of input bias current that can flow into the input terminal of the component without causing any adverse effects on its performance. Input bias current is the small amount of current that flows into the input terminal of an electronic component, such as an operational amplifier, transistor, or integrated circuit, even when no input signal is applied. This parameter is important because excessive input bias current can lead to errors in the output signal and affect the overall performance of the component. Manufacturers specify a maximum value for input bias current to ensure proper operation and reliability of the component in various applications. It is crucial for designers and engineers to consider this parameter when selecting components for their circuits to ensure optimal performance and functionality.

    1pA @ 5.5V
  • Hysteresis

    Hysteresis in electronic components refers to the phenomenon where the output of a system depends not only on its current input but also on its past inputs. In other words, the system's response to a particular input may differ depending on whether the input is increasing or decreasing. This behavior is often seen in devices such as sensors, amplifiers, and control systems. Hysteresis can be intentional, designed to provide stability or prevent rapid switching, or it can be unwanted and lead to inaccuracies in the system's performance. Understanding and managing hysteresis is important in ensuring the reliability and accuracy of electronic components and systems.

    6.5mV
  • CMRR, PSRR (Typ)

    CMRR stands for Common-Mode Rejection Ratio, which measures the ability of an amplifier to reject common-mode signals, or noise that appears simultaneously on both inputs. It is defined as the ratio of differential gain to common-mode gain, typically expressed in decibels. PSRR, or Power Supply Rejection Ratio, indicates how well an electronic component can reject fluctuations in its power supply voltage, showing the relationship between changes in supply voltage and the output voltage variation. Both parameters are critical for assessing the performance and stability of amplifiers and other electronic circuits in real-world applications.

    70dB CMRR, 80dB PSRR
  • Height
    850μm
  • Length
    3mm
  • Width
    3mm
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    Non-RoHS Compliant
0 Similar Products Remaining
Download datasheets and manufacturer documentation for Microchip Technology MCP6546-I/MS.

MCP6546-I/MS Overview

A convenient transport package is provided in 8-TSSOP, 8-MSOP (0.118, 3.00mm Width) .The comparator has a CMOS, Open-Drain, Rail-to-Rail, TTL output.The part will be shipped by Tube .There are 8 terminals on the comparator.A comparator is capable of completing a variety of demanding tasks when supplied with 5V voltage.Electronic comparator is possible to classify the chip as General Purpose .As a result, it contains 8 pins.Electronic comparator is recommended that you mount the device using type Surface Mount .Electronic comparator is recommended that the operating temperature be set to -40°C~85°C to prevent malfunctions.The comparator is equipped with 8 pins.Search MCP6546 to find more pin-to-pin solutions.There is a quiescent current of 1μA in this comparator.The PCB or other board has a Surface Mount for mounting.Electronic comparator is recommended that the nominal supply current be 1μA in order to use the device normally.Electronic comparator is possible for the comparator to malfunction when the current supply exceeds 1μA .The normal operation of the system requires 5V operating voltage.

MCP6546-I/MS Features

CMOS, Open-Drain, Rail-to-Rail, TTL output capability
General Purpose IC
Operates under -40°C~85°C
Quiescent Current: 1μA

MCP6546-I/MS Applications

There are a lot of Microchip Technology
MCP6546-I/MS linear comparators applications.


  • Battery management and protection
  • Current and voltage sensing
  • Analog front end
  • Power management
  • Point of load regulators
  • DC/DC and AC/DC power supplies
  • System control and monitoring
  • Wearable Devices
  • Mobile Phones and Tablets
  • Battery-Powered Electronics
The three parts on the right have similar specifications to Microchip Technology & MCP6546-I/MS.
MCP6546-I/MS Relevant information

Hot Sale
Related Categories
Similar Products
Popular Search
Related Products
The following parts include "MCP6546-I/MS" in Microchip Technology MCP6546-I/MS.
  • Part Number
  • Manufacturer
  • Package
  • Description