

Molex 5019123590
Manufacturer No:
5019123590
Tiny WHSLManufacturer:
Utmel No:
1657-5019123590
Package:
-
Datasheet:
Description:
Easy-On 501912 Series FPC Tape & Reel (TR) 0.012 0.30mm Solder 35 Positions Surface Mount, Right Angle Gold -20°C~85°C 0.2A
Quantity:
Unit Price: $1.675017
Ext Price: $1.68
Delivery:





Payment:











In Stock : 36811
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$1.675017
$1.68
10
$1.580205
$15.80
100
$1.490759
$149.08
500
$1.406377
$703.19
1000
$1.326771
$1,326.77
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Factory Lead Time15 Weeks
- Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Surface Mount, Right Angle - Material
In electronic components, the parameter "Material" refers to the substance or material used in the construction of the component. The choice of material is crucial as it directly impacts the component's performance, durability, and other characteristics. Different materials have varying properties such as conductivity, resistance to heat, corrosion resistance, and mechanical strength, which determine how the component functions in a circuit. Common materials used in electronic components include metals like copper and aluminum, semiconductors like silicon, insulators like ceramics and plastics, and various alloys. Selecting the appropriate material is essential for designing reliable and efficient electronic components.
Thermoplastic - Housing Material
The parameter "Housing Material" in electronic components refers to the material used to encase or protect the internal circuitry of the component. The housing material plays a crucial role in providing physical protection, insulation, and environmental resistance to the electronic component. Common housing materials include plastics, metals, ceramics, and composites, each offering different levels of durability, heat resistance, and electrical properties. The choice of housing material is important in determining the overall performance, reliability, and longevity of the electronic component in various operating conditions.
Polymer, Glass Filled - Actuator Material
In smart material system, actuator materials have the ability to change the shape, stiffness, position, natural frequency, damping and/or other mechanical characteristics of the smart material systems in response to changes in temperature, electric field and/or magnetic field.
Polymer, Glass Filled - Contact MaterialsCopper Alloy
- Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-20°C~85°C - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Tape & Reel (TR) - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
Easy-On 501912 - Published2016
- JESD-609 Code
The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.
e4 - Pbfree Code
The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.
yes - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
1 (Unlimited) - Termination
Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.
Solder - Number of Positions35
- Number of Rows1
- Gender
In the context of electronic components, the parameter "Gender" typically refers to the physical characteristics of connectors or interfaces that determine how they can be mated together. Connectors are often designed with specific gender types, such as male or female, to ensure proper alignment and connection between devices. A male connector typically has protruding pins or plugs that fit into a corresponding female connector, which has receptacles or sockets to receive the pins. This design helps prevent incorrect connections and ensures a secure and reliable electrical connection. Understanding the gender of connectors is crucial when designing or assembling electronic systems to ensure compatibility and proper functionality. It is essential to match the gender of connectors correctly to avoid damage and ensure optimal performance of the electronic components.
Receptacle - MIL Conformance
MIL Conformance refers to the compliance of electronic components with military standards set by the Department of Defense. These standards define rigorous requirements for reliability, performance, and durability under extreme conditions. Components that meet MIL Conformance are often used in defense, aerospace, and other critical applications where failure is not an option. Adherence to these standards ensures that the components can withstand harsh environments, such as extreme temperatures, vibrations, and humidity.
NO - DIN Conformance
DIN Conformance refers to the compliance of an electronic component with the standards set by the Deutsches Institut für Normung (DIN), which is the German Institute for Standardization. DIN standards cover a wide range of technical specifications and requirements for various products, including electronic components. When a component is labeled as DIN-conformant, it means that it meets the specific criteria outlined by DIN for factors such as dimensions, materials, performance, and safety. Ensuring DIN conformance helps to guarantee interoperability, quality, and reliability of electronic components in various applications and industries. Manufacturers often adhere to DIN standards to demonstrate the quality and reliability of their products to customers and to ensure compatibility with other DIN-compliant devices.
NO - IEC Conformance
IEC Conformance refers to the compliance of electronic components with standards set by the International Electrotechnical Commission (IEC). These standards ensure that the components meet specific safety, performance, and interoperability criteria. Adhering to IEC conformance helps manufacturers produce reliable and compatible products, facilitating international trade and promoting consumer safety. Components that conform to IEC standards are often preferred in global markets due to their quality assurance and regulatory acceptance.
NO - Filter Feature
In electronic components, the "Filter Feature" parameter refers to the capability of a component to filter or block certain frequencies of signals while allowing others to pass through. Filters are used to remove unwanted noise or interference from a signal, ensuring that only the desired frequencies are transmitted or received. The filter feature can be implemented using various techniques such as capacitors, inductors, resistors, or active components like operational amplifiers. Different types of filters, such as low-pass, high-pass, band-pass, and band-stop filters, are designed to cater to specific frequency ranges and applications. Overall, the filter feature plays a crucial role in maintaining signal integrity and improving the performance of electronic circuits.
NO - Mixed Contacts
In electronic components, "Mixed Contacts" refers to a type of contact arrangement where different types of contacts are used within the same component. This can include a combination of different contact materials, such as gold-plated contacts for signal transmission and silver-plated contacts for power connections. Mixed contacts can also refer to a combination of different contact styles, such as pin contacts and socket contacts within the same component.The use of mixed contacts allows for optimized performance and reliability in electronic components by leveraging the specific advantages of each contact type. For example, gold-plated contacts offer excellent conductivity and corrosion resistance, while silver-plated contacts provide high current-carrying capacity. By incorporating mixed contacts, manufacturers can tailor the component to meet the specific requirements of the application, ensuring efficient and reliable operation.
NO - OptionGENERAL PURPOSE
- Current Rating (Amps)
The parameter "Current Rating (Amps)" in electronic components refers to the maximum amount of electrical current that the component can safely handle without being damaged. It is typically measured in amperes (A) and is an important specification to consider when designing or selecting components for a circuit. Exceeding the current rating of a component can lead to overheating, malfunction, or even failure of the component. It is crucial to ensure that the current rating of a component matches the requirements of the circuit to prevent any potential issues and ensure reliable operation.
0.2A - Pitch
In electronic components, "Pitch" refers to the distance between the center of one pin or lead to the center of the adjacent pin or lead on a component, such as an integrated circuit (IC) or a connector. It is a crucial parameter as it determines the spacing and alignment of the pins or leads on a component, which in turn affects how the component can be mounted on a circuit board or connected to other components.The pitch measurement is typically expressed in millimeters (mm) or inches (in) and plays a significant role in determining the overall size and layout of a circuit board. Components with different pitches may require specific types of circuit boards or connectors to ensure proper alignment and connection. Designers must carefully consider the pitch of components when designing circuit layouts to ensure compatibility and proper functionality of the electronic system.
0.012 0.30mm - Orientation
In electronic components, the parameter "Orientation" refers to the specific alignment or positioning of the component with respect to its intended installation or operation. This parameter is crucial for ensuring proper functionality and performance of the component within a circuit or system. Orientation may include factors such as the physical orientation of the component on a circuit board, the direction of current flow through the component, or the alignment of specific features or terminals for correct connection. Manufacturers often provide orientation guidelines in datasheets or technical specifications to help users correctly install and use the component. Paying attention to the orientation of electronic components is essential to prevent errors, ensure reliability, and optimize the overall performance of electronic devices.
Right Angle - Depth
In electronic components, "Depth" typically refers to the measurement of the distance from the front to the back of the component. It is an important parameter to consider when designing or selecting components for a project, as it determines how much space the component will occupy within a circuit or device. The depth of a component can impact the overall size and layout of the circuit board or enclosure in which it will be installed. It is usually specified in millimeters or inches and is crucial for ensuring proper fit and functionality within the intended application.
3.85mm - Current Rating
Current rating is the maximum current that a fuse will carry for an indefinite period without too much deterioration of the fuse element.
200mA - Contact Finish
Contact finish refers to the surface coating or treatment applied to the electrical contacts of electronic components. This finish is crucial for ensuring reliable electrical connections and preventing corrosion or oxidation of the contacts. Common contact finishes include gold, silver, tin, and nickel, each offering different levels of conductivity, durability, and resistance to environmental factors. The choice of contact finish depends on the specific application requirements, such as operating conditions, cost considerations, and compatibility with other components in the circuit. Selecting the appropriate contact finish is essential for maintaining the performance and longevity of electronic devices.
Gold - Number of Contacts35
- UL Flammability Code
The UL Flammability Code is a parameter used to indicate the flammability rating of electronic components. It is assigned by Underwriters Laboratories (UL) based on the component's performance in flammability tests. The code consists of a two-letter designation, with the first letter indicating the component's flammability rating and the second letter indicating the component's resistance to ignition. Components with a higher UL Flammability Code are less likely to catch fire or sustain combustion, making them safer for use in electronic devices. It is important to consider the UL Flammability Code when selecting components to ensure compliance with safety standards and regulations.
94V-0 - Housing Color
Housing color in electronic components refers to the color of the protective casing or enclosure that surrounds the component. It can play a role in visual identification, aiding in easy recognition during assembly or maintenance. Additionally, the housing color may also have implications for heat dissipation, aesthetic considerations, or regulatory compliance depending on the application or industry standards.
Black - Contact Resistance
Contact resistance refers to the resistance encountered at the point of contact between two conductive materials or components. It is a measure of how well the two materials make electrical contact with each other. High contact resistance can lead to voltage drops, power losses, and inefficient electrical connections. It is typically measured in ohms and is an important parameter to consider in electronic components such as connectors, switches, and relays. Lower contact resistance is desirable for ensuring reliable and efficient electrical connections in electronic circuits.
80mOhm - ELV
ELV stands for Extra-Low Voltage, which refers to a specific voltage range used in electronic components and systems. This voltage range typically falls below 50 volts AC or 120 volts DC. ELV systems are designed to operate at lower voltages for safety reasons, as they pose a reduced risk of electric shock compared to higher voltage systems. Components and devices operating within the ELV range are commonly used in various applications, such as telecommunications, data centers, and low-power electronics. Adhering to ELV standards helps ensure the safety of both users and equipment in these systems.
Compliant - Max Voltage Rating (AC)
The parameter "Max Voltage Rating (AC)" in electronic components refers to the maximum alternating current (AC) voltage that the component can safely handle without being damaged. This rating is important for ensuring the component's longevity and reliability in a circuit. Exceeding the maximum voltage rating can lead to overheating, breakdown, or even permanent damage to the component. It is crucial to select components with voltage ratings that are suitable for the intended application to prevent malfunctions or safety hazards in the circuit.
50V - Wire/Cable Type
Wire/Cable Type refers to the specific classification or category of wire or cable used in electronic components, which determines its characteristics, such as size, material, insulation, and intended application. Common types include stranded or solid conductors, and variations like coaxial, twisted pair, and ribbon cables. Each type is designed to meet specific requirements for electrical conductivity, flexibility, durability, and resistance to environmental factors. Selecting the appropriate wire or cable type is crucial for ensuring the performance and reliability of electronic devices and systems.
Straight - Mating Cycles
to the number of a times a physical connector can “mate” or connect to it's counterpart.
20 - Flat Flex Type
Flat Flex Type refers to a specific configuration of flat flexible cables (FFC) used in electronic components. These cables are designed to provide a compact and flexible interconnection between different parts of electronic devices. The Flat Flex Type is characterized by its thin, flat shape, allowing for space-efficient routing and ease of integration in tight spaces. It is commonly utilized in applications such as LCD displays, medical devices, and automotive electronics, where flexibility and reliability are critical.
FPC - Cable End Type
Cable End Type refers to the specific design or configuration of the end of a cable or wire that is used to connect to a device or component. This parameter describes the physical characteristics of the cable end, such as the shape, size, and connector type. Common cable end types include connectors like USB, HDMI, RJ45, and various types of audio connectors. Understanding the cable end type is important for ensuring compatibility and proper connection between devices in electronic systems. It helps in selecting the right cables and connectors to establish secure and reliable connections for data or power transmission.
Tapered - Locking Feature
The "Locking Feature" in electronic components refers to a mechanism or design element that helps secure the component in place once it is installed. This feature is commonly found in connectors, switches, and other components that need to remain stable and secure during operation. The locking feature can come in various forms, such as locking tabs, screws, latches, or other mechanisms that prevent the component from becoming loose or dislodged. By incorporating a locking feature, electronic components can ensure reliable connections, prevent accidental disconnection, and enhance overall system stability and performance.
Flip Lock - Stackable
The parameter "Stackable" in electronic components refers to the ability of certain components to be physically layered or stacked on top of each other without compromising their functionality or performance. This feature is particularly common in modules, such as memory or power supplies, allowing for compact designs and efficient use of space in electronic systems. Stackable components often include features like alignment guides or electrical interconnects that facilitate easy assembly and reliable connections in multi-layer configurations.
No - Contact Location
Contact Location in electronic components refers to the specific physical location where electrical contacts are made within the component. This parameter is crucial for ensuring proper connectivity and functionality of the component within a circuit. The contact location determines how the component will interact with other components or devices in the circuit, and it is typically specified in technical datasheets to aid in proper installation and usage. Understanding the contact location is important for engineers and technicians to design and troubleshoot electronic circuits effectively.
Bottom - Features
In the context of electronic components, the term "Features" typically refers to the specific characteristics or functionalities that a particular component offers. These features can vary depending on the type of component and its intended use. For example, a microcontroller may have features such as built-in memory, analog-to-digital converters, and communication interfaces like UART or SPI.When evaluating electronic components, understanding their features is crucial in determining whether they meet the requirements of a particular project or application. Engineers and designers often look at features such as operating voltage, speed, power consumption, and communication protocols to ensure compatibility and optimal performance.In summary, the "Features" parameter in electronic components describes the unique attributes and capabilities that differentiate one component from another, helping users make informed decisions when selecting components for their electronic designs.
Solder Retention - Length12.6mm
- FFC, FCB Thickness
The parameter "FFC, FCB Thickness" in electronic components refers to the thickness of the Flexible Flat Cable (FFC) or Flexible Circuit Board (FCB) used in electronic devices. FFC and FCB are thin, flat cables or boards that are used to connect various components within electronic devices, providing flexibility and space-saving advantages. The thickness of the FFC or FCB is an important specification as it can impact the overall design, flexibility, and performance of the electronic device. Manufacturers provide this parameter to ensure compatibility and proper functioning of the components within the device.
0.20mm - Material Flammability Rating
The Material Flammability Rating is a parameter used to indicate the flammability characteristics of materials used in electronic components. It is typically measured according to standards such as UL94, which classifies materials into different categories based on their flammability properties. The rating helps in assessing the fire safety of electronic devices and components, as materials with higher flammability ratings are more resistant to ignition and combustion. Manufacturers often specify the Material Flammability Rating of their components to ensure compliance with safety regulations and standards. It is important to consider this parameter when designing and selecting electronic components to minimize fire hazards and ensure the overall safety of the end product.
UL94 V-0 - REACH SVHC
The parameter "REACH SVHC" in electronic components refers to the compliance with the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation regarding Substances of Very High Concern (SVHC). SVHCs are substances that may have serious effects on human health or the environment, and their use is regulated under REACH to ensure their safe handling and minimize their impact.Manufacturers of electronic components need to declare if their products contain any SVHCs above a certain threshold concentration and provide information on the safe use of these substances. This information allows customers to make informed decisions about the potential risks associated with using the components and take appropriate measures to mitigate any hazards.Ensuring compliance with REACH SVHC requirements is essential for electronics manufacturers to meet regulatory standards, protect human health and the environment, and maintain transparency in their supply chain. It also demonstrates a commitment to sustainability and responsible manufacturing practices in the electronics industry.
Unknown - RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
ROHS3 Compliant - Flammability Rating
The Flammability Rating of electronic components refers to the material's ability to resist catching fire or burning when exposed to heat or flames. It is an important safety consideration in electronic design and manufacturing, especially for components that may be used in environments where fire hazards are a concern. The rating is typically expressed using a standardized scale, such as UL94, which classifies materials based on their flammability characteristics. Components with higher flammability ratings are more resistant to ignition and contribute to overall fire safety in electronic devices. It is crucial to select components with appropriate flammability ratings to ensure the reliability and safety of electronic products.
UL94 V-0