ON Semiconductor H11AA1VM
ON Semiconductor H11AA1VM
feed

ON Semiconductor H11AA1VM

Manufacturer No:

H11AA1VM

Manufacturer:

ON Semiconductor

Utmel No:

1807-H11AA1VM

Package:

6-DIP (0.300, 7.62mm)

Datasheet:

H11AAxM Series

ECAD Model:

Description:

OPTOISO 4.17KV TRANS W/BASE 6DIP

Quantity:

Unit Price: $0.777845

Ext Price: $0.78

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : 48

Minimum: 1 Multiples: 1

Qty

Unit Price

Ext Price

  • 1

    $0.777845

    $0.78

  • 10

    $0.733816

    $7.34

  • 100

    $0.692279

    $69.23

  • 500

    $0.653094

    $326.55

  • 1000

    $0.616126

    $616.13

Want a lower wholesale price? Please send RFQ, we will respond immediately.

RFQ Now

Add to RFQ list

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
H11AA1VM information

Specifications
Documents & Media
Product Details
Product Comparison
ON Semiconductor H11AA1VM technical specifications, attributes, parameters and parts with similar specifications to ON Semiconductor H11AA1VM.
  • Type
    Parameter
  • Lifecycle Status

    Lifecycle Status refers to the current stage of an electronic component in its product life cycle, indicating whether it is active, obsolete, or transitioning between these states. An active status means the component is in production and available for purchase. An obsolete status indicates that the component is no longer being manufactured or supported, and manufacturers typically provide a limited time frame for support. Understanding the lifecycle status is crucial for design engineers to ensure continuity and reliability in their projects.

    ACTIVE (Last Updated: 3 days ago)
  • Factory Lead Time
    7 Weeks
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Through Hole
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    6-DIP (0.300, 7.62mm)
  • Number of Pins
    6
  • Weight
    855mg
  • Current Transfer Ratio-Min
    20% @ 10mA
  • Number of Elements
    1
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~100°C
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tube
  • Published
    2014
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Pbfree Code

    The "Pbfree Code" parameter in electronic components refers to the code or marking used to indicate that the component is lead-free. Lead (Pb) is a toxic substance that has been widely used in electronic components for many years, but due to environmental concerns, there has been a shift towards lead-free alternatives. The Pbfree Code helps manufacturers and users easily identify components that do not contain lead, ensuring compliance with regulations and promoting environmentally friendly practices. It is important to pay attention to the Pbfree Code when selecting electronic components to ensure they meet the necessary requirements for lead-free applications.

    yes
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Active
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Tin (Sn)
  • Additional Feature

    Any Feature, including a modified Existing Feature, that is not an Existing Feature.

    UL RECOGNIZED, VDE APPROVED
  • Max Power Dissipation

    The maximum power that the MOSFET can dissipate continuously under the specified thermal conditions.

    250mW
  • Voltage - Isolation

    Voltage - Isolation is a parameter in electronic components that refers to the maximum voltage that can be safely applied between two isolated points without causing electrical breakdown or leakage. It is a crucial specification for components such as transformers, optocouplers, and capacitors that require isolation to prevent electrical interference or safety hazards. The voltage isolation rating ensures that the component can withstand the specified voltage without compromising its performance or safety. It is typically measured in volts and is an important consideration when designing circuits that require isolation between different parts of the system.

    4170Vrms
  • Output Voltage

    Output voltage is a crucial parameter in electronic components that refers to the voltage level produced by the component as a result of its operation. It represents the electrical potential difference between the output terminal of the component and a reference point, typically ground. The output voltage is a key factor in determining the performance and functionality of the component, as it dictates the level of voltage that will be delivered to the connected circuit or load. It is often specified in datasheets and technical specifications to ensure compatibility and proper functioning within a given system.

    30V
  • Output Type

    The "Output Type" parameter in electronic components refers to the type of signal or data that is produced by the component as an output. This parameter specifies the nature of the output signal, such as analog or digital, and can also include details about the voltage levels, current levels, frequency, and other characteristics of the output signal. Understanding the output type of a component is crucial for ensuring compatibility with other components in a circuit or system, as well as for determining how the output signal can be utilized or processed further. In summary, the output type parameter provides essential information about the nature of the signal that is generated by the electronic component as its output.

    Transistor with Base
  • Configuration

    The parameter "Configuration" in electronic components refers to the specific arrangement or setup of the components within a circuit or system. It encompasses how individual elements are interconnected and their physical layout. Configuration can affect the functionality, performance, and efficiency of the electronic system, and may influence factors such as signal flow, impedance, and power distribution. Understanding the configuration is essential for design, troubleshooting, and optimizing electronic devices.

    SINGLE
  • Power Dissipation

    the process by which an electronic or electrical device produces heat (energy loss or waste) as an undesirable derivative of its primary action.

    250mW
  • Voltage - Forward (Vf) (Typ)

    The parameter "Voltage - Forward (Vf) (Typ)" in electronic components refers to the typical forward voltage drop across the component when it is conducting current in the forward direction. It is a crucial characteristic of components like diodes and LEDs, indicating the minimum voltage required for the component to start conducting current. The forward voltage drop is typically specified as a typical value because it can vary slightly based on factors such as temperature and manufacturing tolerances. Designers use this parameter to ensure that the component operates within its specified voltage range and to calculate power dissipation in the component.

    1.17V
  • Input Type

    Input type in electronic components refers to the classification of the signal or data that a component can accept for processing or conversion. It indicates whether the input is analog, digital, or a specific format such as TTL or CMOS. Understanding input type is crucial for ensuring compatibility between different electronic devices and circuits, as it determines how signals are interpreted and interacted with.

    AC, DC
  • Optoelectronic Device Type

    Optoelectronic Device Type refers to the classification of electronic components that can both detect and emit light. These devices convert electrical signals into light or vice versa, making them essential for applications such as optical communication, sensing, and display technologies. Common types of optoelectronic devices include light-emitting diodes (LEDs), photodiodes, phototransistors, and laser diodes. Understanding the optoelectronic device type is crucial for selecting the appropriate component for a specific application based on factors such as wavelength, power output, and sensitivity.

    AC INPUT-TRANSISTOR OUTPUT OPTOCOUPLER
  • Forward Current

    Current which flows upon application of forward voltage.

    60mA
  • Max Output Voltage

    The maximum output voltage refers to the dynamic area beyond which the output is saturated in the positive or negative direction, and is limited according to the load resistance value.

    30V
  • Output Current per Channel

    Output Current per Channel is a specification commonly found in electronic components such as amplifiers, audio interfaces, and power supplies. It refers to the maximum amount of electrical current that can be delivered by each individual output channel of the component. This parameter is important because it determines the capacity of the component to drive connected devices or loads. A higher output current per channel means the component can deliver more power to connected devices, while a lower output current may limit the performance or functionality of the component in certain applications. It is crucial to consider the output current per channel when selecting electronic components to ensure they can meet the power requirements of the intended system or setup.

    50mA
  • Collector Emitter Voltage (VCEO)

    Collector-Emitter Voltage (VCEO) is a key parameter in electronic components, particularly in transistors. It refers to the maximum voltage that can be applied between the collector and emitter terminals of a transistor while the base terminal is open or not conducting. Exceeding this voltage limit can lead to breakdown and potential damage to the transistor. VCEO is crucial for ensuring the safe and reliable operation of the transistor within its specified limits. Designers must carefully consider VCEO when selecting transistors for a circuit to prevent overvoltage conditions that could compromise the performance and longevity of the component.

    400mV
  • Max Collector Current

    Max Collector Current is a parameter used to specify the maximum amount of current that can safely flow through the collector terminal of a transistor or other electronic component without causing damage. It is typically expressed in units of amperes (A) and is an important consideration when designing circuits to ensure that the component operates within its safe operating limits. Exceeding the specified max collector current can lead to overheating, degradation of performance, or even permanent damage to the component. Designers must carefully consider this parameter when selecting components and designing circuits to ensure reliable and safe operation.

    50mA
  • Max Input Current

    Max Input Current is a parameter that specifies the maximum amount of electrical current that can safely flow into an electronic component without causing damage. It is an important consideration when designing or using electronic circuits to ensure that the component operates within its specified limits. Exceeding the maximum input current can lead to overheating, component failure, or even pose safety risks. Manufacturers provide this parameter in datasheets to help engineers and users understand the limitations of the component and ensure proper operation within the specified parameters.

    60mA
  • On-State Current-Max

    The parameter "On-State Current-Max" in electronic components refers to the maximum current that can flow through the component when it is in the fully conducting state, also known as the "on-state." This parameter is crucial for determining the maximum load that the component can handle without getting damaged. It is typically specified in the component's datasheet and is important for ensuring the safe and reliable operation of the component within its specified limits. Designers and engineers use this parameter to select components that can handle the required current levels in their circuits without exceeding the maximum ratings.

    0.05A
  • Current Transfer Ratio

    Current Transfer Ratio (CTR) is the gain of the optocoupler. It is the ratio of the phototransistor collector current to the IRED forward current. CTR = (IC / IF) * 100 It is expressed as a percentage (%).

    20%
  • Dark Current-Max

    Dark Current-Max refers to the maximum amount of current that flows through a photodetector or similar electronic component in the absence of incident light. It is an important parameter that indicates the level of noise in a sensor and is typically measured in terms of amperes or milliamperes. High dark current values can lead to decreased signal-to-noise ratio, affecting the overall sensitivity and performance of the device in low-light conditions. Understanding this parameter is crucial for applications that require precise light detection and measurement.

    50nA
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining

Product Description: H11AA1VM Optoisolator from ON Semiconductor

Description

The H11AA1VM is a high-performance optoisolator from ON Semiconductor, designed to provide reliable and efficient isolation between AC and DC signals. This device is ideal for applications requiring robust electrical isolation while maintaining a high level of signal integrity. With its UL recognized and VDE approved features, the H11AA1VM ensures compliance with stringent safety standards.

Features

  • Optoelectronic Device Type: AC INPUT-TRANSISTOR OUTPUT OPTOCOUPLER
  • Configuration: SINGLE
  • Current Transfer Ratio: 20%
  • Current Transfer Ratio-Min: 20% @ 10mA
  • Dark Current-Max: 50nA
  • Forward Current: 60mA
  • Input Type: AC, DC
  • Max Collector Current: 50mA
  • Max Input Current: 60mA
  • Max Output Voltage: 30V
  • Max Power Dissipation: 250mW
  • Operating Temperature Range: -40°C~100°C
  • Output Current per Channel: 50mA
  • Output Type: Transistor with Base
  • Voltage - Forward (Typ): 1.17V
  • Voltage - Isolation: 4170Vrms

Applications

  1. Primary Applications:
  2. Industrial control systems requiring electrical isolation.
  3. Medical devices needing signal isolation.
  4. Automotive systems for safety-critical applications.

  5. Secondary Applications:

  6. Telecommunications equipment.
  7. Home automation systems.
  8. Power supplies and inverters.

Alternative Parts

While there are no direct alternatives listed for the H11AA1VM, other optoisolators from ON Semiconductor or similar manufacturers like Vishay or Texas Instruments could serve as substitutes depending on specific requirements.

Embedded Modules

The H11AA1VM is commonly used in various embedded systems including:

  1. Industrial control units.
  2. Medical device interfaces.
  3. Automotive control modules.

Summary

The H11AA1VM offers robust electrical isolation with high signal integrity, making it an excellent choice for a wide range of applications across industries. Its compliance with safety standards such as UL recognition and VDE approval further enhances its reliability and suitability for critical systems where safety is paramount.


This product description encapsulates the key features, applications, and alternative parts of the H11AA1VM optoisolator from ON Semiconductor, providing a comprehensive overview for potential users and engineers.

The three parts on the right have similar specifications to ON Semiconductor & H11AA1VM.
  • Image
    Part Number
    Manufacturer
    Package / Case
    Number of Pins
    Voltage - Isolation
    Current Transfer Ratio
    Current Transfer Ratio (Min)
    Max Output Voltage
    Output Voltage
    Forward Current
    Availability
    Price
    Quantity
    Compare Two Parts
    Compare Three Parts
  • H11AA1VM

    H11AA1VM

    6-DIP (0.300, 7.62mm)

    6

    4170Vrms

    20%

    20% @ 10mA

    30 V

    30 V

    60 mA

    48
    $0.777845
  • 4N26X

    6-DIP (0.300, 7.62mm)

    6

    5300Vrms

    500 %

    500% @ 10mA

    30 V

    30 V

    60 mA

    47
    $0.499066

    Same as the main part number.