

Panasonic Electric Works ALZ12B24W
Manufacturer No:
ALZ12B24W
Tiny WHSLManufacturer:
Utmel No:
1850-ALZ12B24W
Package:
DIP
Description:
General Purpose Relays 1 Form C 16A 24V Sealed Class B Coil
Quantity:
Unit Price: $2.160550
Ext Price: $2.16
Delivery:





Payment:











In Stock : 49
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$2.160550
$2.16
10
$2.038255
$20.38
100
$1.922882
$192.29
500
$1.814039
$907.02
1000
$1.711358
$1,711.36
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Factory Lead Time16 Weeks
- Mount
In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.
Through Hole - Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Through Hole - Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
DIP - Number of Pins8
- Weight12g
- CoilResistance1.44kOhm
- Contact MaterialsSilver Tin Oxide (AgSnO)
- ElectricalLife50000 Cycle(s)
- Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-40°C~85°C - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Bulk - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
ALZ - Published2004
- Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
1 (Unlimited) - Number of Terminations8
- Termination
Termination in electronic components refers to the practice of matching the impedance of a circuit to prevent signal reflections and ensure maximum power transfer. It involves the use of resistors or other components at the end of transmission lines or connections. Proper termination is crucial in high-frequency applications to maintain signal integrity and reduce noise.
PC Pin - ECCN Code
An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.
EAR99 - Additional Feature
Any Feature, including a modified Existing Feature, that is not an Existing Feature.
LOW PROFILE - Packing Method
The packing method in electronic components refers to the technique used to package and protect the component during shipping and handling. It encompasses various forms including tape and reel, tray, tube, or bulk packaging, each suited for different types of components and manufacturing processes. The choice of packing method can affect the ease of handling, storage, and the efficiency of assembly in automated processes. Additionally, it plays a crucial role in ensuring the reliability and integrity of the components until they are used in electronic devices.
BOX - Reach Compliance Code
Reach Compliance Code refers to a designation indicating that electronic components meet the requirements set by the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation in the European Union. It signifies that the manufacturer has assessed and managed the chemical substances within the components to ensure safety and environmental protection. This code is vital for compliance with regulations aimed at minimizing risks associated with hazardous substances in electronic products.
unknown - Reference Standard
In the context of electronic components, the term "Reference Standard" typically refers to a specific set of guidelines, specifications, or requirements that serve as a benchmark for evaluating the quality, performance, and characteristics of the component. These standards are established by organizations such as the International Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers (IEEE), or specific industry bodies.Reference standards help ensure consistency and interoperability among different components, as they provide a common framework for manufacturers, designers, and users to adhere to. They outline parameters such as electrical properties, mechanical dimensions, environmental conditions, and safety considerations that the component must meet to be considered compliant.By referencing these standards, manufacturers can design and produce components that meet industry-recognized criteria, which in turn helps users select the right components for their applications with confidence. Adhering to reference standards also facilitates regulatory compliance and promotes overall quality and reliability in electronic systems.
UL; VDE - Termination Style
"Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.
PC Pin - Body Breadth
Body breadth in electronic components refers to the width of the physical body of a component, such as a resistor, capacitor, or integrated circuit. This measurement is crucial for ensuring proper fit within a circuit board or enclosure. It can affect the component's thermal performance, mechanical stability, and overall compatibility with other components in a design. Body breadth is typically specified in millimeters or inches and is an important factor in the selection and design of electronic assemblies.
12.5 mm - Contact Resistance
Contact resistance refers to the resistance encountered at the point of contact between two conductive materials or components. It is a measure of how well the two materials make electrical contact with each other. High contact resistance can lead to voltage drops, power losses, and inefficient electrical connections. It is typically measured in ohms and is an important parameter to consider in electronic components such as connectors, switches, and relays. Lower contact resistance is desirable for ensuring reliable and efficient electrical connections in electronic circuits.
100mOhm - Insulation Resistance
The measurement of insulation resistance is carried out by means of a megohmmeter – high resistance range ohmmeter. A general rule-of-thumb is 10 Megohm or more.
1000000000Ohm - Max Voltage Rating (AC)
The parameter "Max Voltage Rating (AC)" in electronic components refers to the maximum alternating current (AC) voltage that the component can safely handle without being damaged. This rating is important for ensuring the component's longevity and reliability in a circuit. Exceeding the maximum voltage rating can lead to overheating, breakdown, or even permanent damage to the component. It is crucial to select components with voltage ratings that are suitable for the intended application to prevent malfunctions or safety hazards in the circuit.
440V - Max Current Rating
The "Max Current Rating" parameter in electronic components refers to the maximum amount of electrical current that the component can safely handle without being damaged. It is an important specification to consider when designing or selecting components for a circuit, as exceeding the maximum current rating can lead to overheating, malfunction, or even permanent damage to the component. The max current rating is typically provided in amperes (A) and is determined by the component's internal construction, materials used, and thermal characteristics. It is crucial to ensure that the current flowing through the component does not exceed this specified limit to maintain the component's reliability and longevity.
16A - Throw Configuration
"Throw Configuration" is a term commonly used in the context of switches and relays in electronic components. It refers to the number of positions or states that the switch or relay can be set to. For example, a single-throw (ST) configuration means the switch has only one position, while a double-throw (DT) configuration means the switch has two positions.The throw configuration is important because it determines the versatility and functionality of the switch or relay. Different applications may require different throw configurations to control the flow of current or signals effectively. Understanding the throw configuration of a component is crucial for proper installation and operation within an electronic circuit.
SPDT - Contact Form
A page on a website that allows users to communicate with the site owner. The page has fields for filling in name, address and type of comment. On most company websites, email and mailing addresses are also included; however, the contact form provides an immediate, convenient way for users to ask the company questions.
SPDT (1 Form C) - Relay Type
In electronic components, the parameter "Relay Type" refers to the specific classification or categorization of a relay based on its design, functionality, and application. Relays are electromechanical devices that are used to control the switching of circuits by opening or closing contacts in response to an electrical signal. The relay type typically indicates the specific characteristics of the relay, such as its switching mechanism (e.g., electromagnetic, solid-state), contact configuration (e.g., SPST, DPDT), operating voltage, current rating, and intended use (e.g., power relays, signal relays, automotive relays). Understanding the relay type is important for selecting the right relay for a particular application to ensure proper functionality and reliability.
General Purpose - Contact (AC) Max Rating R Load
The parameter "Contact (AC) Max Rating R Load" in electronic components refers to the maximum alternating current (AC) rating that the contact can handle when connected to a resistive load. This specification is important for determining the maximum current that can safely flow through the contact without causing damage or failure. It is typically expressed in amperes (A) and helps ensure that the component can reliably handle the electrical load it is designed for. Manufacturers provide this rating to help users select the appropriate component for their specific application to prevent overheating, arcing, or other potential issues related to excessive current flow.
16A@440VAC - Operate Time
The time interval between the instant of the occurrence of a specified input condition to a system and the instant of completion of a specified operation.
15ms - Coil Voltage
Coil voltage refers to the electrical potential difference that is applied across the coil of an electromechanical device, such as a relay or a solenoid. This voltage is essential for energizing the coil, creating a magnetic field that enables the device to perform its intended function, such as opening or closing contacts. The coil voltage is specified by the manufacturer and varies depending on the design and application of the component, commonly available in standard values like 5V, 12V, 24V, and others. Proper selection of coil voltage is crucial for optimal performance and longevity of the device.
24VDC - Coil Type
There are 2 different types of 'coil'; one has copper on it (IUD) and the other contains hormone (Mirena IUS). Both are over 99% effective at protecting against pregnancy.
Non Latching - Switching Voltage
The maximum switching voltage of a relay is the maximum voltage that can be across the contacts whether the relay is open or closed. Operating a relay with high voltages present can cause arcing, and this in turn erodes the contacts and eventually degrades contact performance.
440VAC -Max - Coil Current
A current coil is basically a coil, such as, a wire wrapped around an electrical conductor.
16.7mA - Release Time
In telecommunication, release time is the time interval for a circuit to respond when an enabling signal is discontinued
5ms - Must Operate Voltage
Must Operate Voltage is the minimum voltage level at which an electronic component or device is guaranteed to function correctly. Below this threshold, the component may experience performance issues, erratic behavior, or complete failure to operate. It is a critical specification for ensuring reliable operation in various applications where voltage variations can occur.
16.8VDC - Coil Power
Coil Power in electronic components refers to the amount of power consumed by a coil or inductor when an electrical current passes through it. It is a measure of the energy dissipated as heat within the coil due to its resistance. The coil power is typically specified in watts and is important to consider when designing circuits to ensure that the coil can handle the power without overheating. Properly managing coil power is crucial for the overall performance and reliability of electronic systems.
400mW - Must Release Voltage
Must Release Voltage is the minimum voltage level that an electronic component, such as a relay or circuit breaker, requires to safely disengage or reset its mechanical operation. This parameter ensures that the component can reliably return to a non-energized state when power is removed or when a control signal goes low. It is an important specification for ensuring proper operation and safety in electronic circuits where the component may be exposed to fluctuating voltages.
2.4VDC - Contact/Output Supply Type
Contact/Output Supply Type is a parameter used to describe the type of connection or output supply required for an electronic component to function properly. This parameter specifies the specific type of contact or supply needed for the component to receive power or transmit signals. It can include details such as the number of pins, voltage levels, current requirements, and communication protocols. Understanding the Contact/Output Supply Type is crucial for selecting compatible components and ensuring proper functionality within an electronic system.
AC - Relay Action
Relay action refers to the type of mechanical movement performed by a relay in response to an electrical signal. It typically describes how the relay transitions between its open and closed states to either allow or interrupt the flow of current in a circuit. Relay action can be classified as normally open or normally closed, indicating the default state of the relay contacts before any current is applied. The speed and responsiveness of this action can significantly affect the performance of the overall circuit in which the relay is used.
MOMENTARY - Coil Voltage (DC)
The parameter "Coil Voltage (DC)" in electronic components refers to the voltage required to energize the coil of an electromagnetic device, such as a relay or a solenoid, when using direct current (DC) power. This voltage is necessary to create a magnetic field within the coil, which in turn activates the component to perform its intended function. The specified coil voltage must match the power supply voltage to ensure proper operation of the component. It is important to carefully select a component with the correct coil voltage rating to prevent damage and ensure reliable performance in electronic circuits.
24V - Coil/Input Supply Type
Coil/Input Supply Type refers to the voltage and current specifications required to operate the coil in electromagnetic components such as relays and solenoids. This parameter indicates whether the component is designed to operate with AC or DC voltage sources and specifies the nominal voltage level for optimal performance. Understanding the Coil/Input Supply Type is essential for ensuring proper operation and compatibility with circuit designs.
DC - PCB Hole Count
The "PCB Hole Count" parameter in electronic components refers to the number of holes present in the printed circuit board (PCB) that are used for mounting and connecting the component. These holes are typically used for inserting leads or pins of the component and soldering them to the PCB for electrical connection. The PCB hole count is an important specification as it determines how the component will be physically mounted and connected to the circuit board during the assembly process. Manufacturers provide this information to help designers and engineers ensure proper placement and alignment of components on the PCB for optimal performance and reliability of the electronic system.
8 - Seal Rating
Seal Rating in electronic components refers to the level of protection the component has against environmental factors such as dust, moisture, and other contaminants. It is a measure of how well the component is sealed to prevent these external elements from entering and potentially damaging the internal circuitry. The seal rating is typically represented by an IP (Ingress Protection) code, which consists of two digits. The first digit indicates the level of protection against solid particles, while the second digit indicates the level of protection against liquids. A higher seal rating indicates a greater level of protection against environmental factors.
Sealed - Fully - Dielectric Strength Between Open Contacts
The parameter "Dielectric Strength Between Open Contacts" in electronic components refers to the maximum voltage that can be applied across open contacts without causing electrical breakdown or arcing. It is a measure of the insulation capability of the material between the contacts. When the dielectric strength is exceeded, the insulating material may break down, leading to a short circuit or other electrical issues. This parameter is important in ensuring the reliability and safety of electronic components, especially in high-voltage applications where maintaining proper insulation is critical. Manufacturers provide dielectric strength specifications to help designers and engineers select components that can withstand the required voltage levels without failure.
1000 Vrms - Input Switching Control Type
Input Switching Control Type refers to the method or mechanism used to control the switching of inputs in electronic components such as switches, relays, or multiplexers. This parameter determines how the selection of different input channels is managed within the component. Common types of input switching control include manual control, where a user physically selects the input channel, and automatic control, where the switching is done based on predetermined criteria or signals. The choice of input switching control type can impact the functionality, flexibility, and ease of use of the electronic component in various applications.
Random - Coil Insulation
Coil insulation in electronic components refers to the material or layer used to separate the individual windings of a coil from each other and from the core. This insulation is crucial for preventing short circuits and ensuring the proper functioning of the coil. Common materials used for coil insulation include varnishes, tapes, resins, and sleeves, which provide electrical insulation and mechanical protection. Proper coil insulation helps maintain the integrity and performance of the coil, especially in high-voltage or high-frequency applications where the risk of electrical breakdown is higher. It is important to choose the right type of insulation based on the specific requirements of the application to ensure reliability and safety.
Class B - Dielectric Strength Between Coil and Contacts
The parameter "Dielectric Strength Between Coil and Contacts" in electronic components refers to the maximum voltage that can be applied between the coil and the contacts without causing electrical breakdown or insulation failure. It is a critical specification that indicates the insulation capability of the component and its ability to withstand high voltage levels. A higher dielectric strength value indicates better insulation properties and increased reliability in preventing electrical arcing or short circuits between the coil and contacts. This parameter is important in ensuring the safe and reliable operation of the electronic component in various applications where high voltages may be present.
5000 Vrms - Contact (AC) Max Power Rating R Load
The parameter "Contact (AC) Max Power Rating R Load" in electronic components refers to the maximum power that can be safely handled by the contacts when carrying an alternating current (AC) load. This rating is important for ensuring that the contacts do not overheat or fail when carrying the specified power level. It is typically expressed in watts and helps determine the suitability of the component for a particular application where AC power is involved. Manufacturers provide this specification to guide users in selecting components that can reliably handle the required power levels without experiencing damage or performance degradation.
4000VA@440VAC - Body Height
In electronic components, "Body Height" refers to the vertical dimension of the component's physical body or package. It is the measurement from the bottom of the component to the top, excluding any leads or terminals. Body Height is an important parameter to consider when designing circuit boards or enclosures to ensure proper fit and clearance. It is typically specified in datasheets or technical drawings provided by the component manufacturer. Understanding the Body Height of electronic components is crucial for proper placement and integration within a circuit or system.
15.7mm - Length - Termination
Length - Termination refers to the specific distance over which an electrical signal travels before it reaches the termination point in electronic components. This parameter is crucial for high-speed signal integrity, as it can impact signal reflection and transmission efficiency. Proper length termination ensures that signals reach their destination without distortion or loss, thereby maintaining the performance of electronic circuits. It is often influenced by the design of the circuit board, the type of components used, and the overall system requirements.
0.0035 inch - RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
RoHS Compliant - Lead Free
Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.
Lead Free
DSP1-DC24V-F
Panasonic Electric WorksJW2SN-DC12V
Panasonic Electric WorksALQ112
Panasonic Electric WorksAPAN3112
Panasonic Electric WorksAPAN3105
Panasonic Electric WorksADW1203HLW
Panasonic Electric WorksAHES3291
Panasonic Electric WorksDSP1-L2-DC6V-F
Panasonic Electric WorksDSP2A-DC12V
Panasonic Electric WorksJW2SN-DC24V
Panasonic Electric Works