

Renesas Electronics America Inc. X9C102PIZ
Potentiometers XDCP™ Series 8 Pin 8 Terminations Electronic potentiometer IC
Manufacturer No:
X9C102PIZ
Tiny WHSLManufacturer:
Utmel No:
2038-X9C102PIZ
Package:
8-DIP (0.300, 7.62mm)
Datasheet:
Usage Grade:
Industrial
Description:
8 Terminations 5V 8 Pin X9C102 Digital Potentiometers XDCP™ Series Up/Down (U/D, INC, CS) 100 Positions
Quantity:
Unit Price: $5.119880
Ext Price: $5.12
Delivery:





Payment:











In Stock : 6
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$5.119880
$5.12
10
$4.830075
$48.30
100
$4.556675
$455.67
500
$4.298750
$2,149.38
1000
$4.055425
$4,055.42
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Factory Lead Time6 Weeks
- Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Through Hole - Package / Case
refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.
8-DIP (0.300, 7.62mm) - Surface Mount
having leads that are designed to be soldered on the side of a circuit board that the body of the component is mounted on.
NO - Memory TypesNon-Volatile
- Usage LevelIndustrial grade
- Operating Temperature
The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.
-40°C~85°C - Packaging
Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.
Tube - Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
XDCP™ - Tolerance
In electronic components, "tolerance" refers to the acceptable deviation or variation from the specified or ideal value of a particular parameter, such as resistance, capacitance, or voltage. It indicates the range within which the actual value of the component can fluctuate while still being considered acceptable for use in a circuit. Tolerance is typically expressed as a percentage or a specific value and is important for ensuring the accuracy and reliability of electronic devices. Components with tighter tolerances are more precise but may also be more expensive. It is crucial to consider tolerance when selecting components to ensure proper functionality and performance of the circuit.
±20% - JESD-609 Code
The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.
e3 - Part Status
Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.
Active - Moisture Sensitivity Level (MSL)
Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures
1 (Unlimited) - Number of Terminations8
- Temperature Coefficient
The resistance-change factor per degree Celsius of temperature change is called the temperature coefficient of resistance. This factor is represented by the Greek lower-case letter “alpha” (α). A positive coefficient for a material means that its resistance increases with an increase in temperature.
300 ppm/°C - Resistance
Resistance is a fundamental property of electronic components that measures their opposition to the flow of electric current. It is denoted by the symbol "R" and is measured in ohms (Ω). Resistance is caused by the collisions of electrons with atoms in a material, which generates heat and reduces the flow of current. Components with higher resistance will impede the flow of current more than those with lower resistance. Resistance plays a crucial role in determining the behavior and functionality of electronic circuits, such as limiting current flow, voltage division, and controlling power dissipation.
1kOhm - Number of Positions100
- Terminal Finish
Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.
MATTE TIN - Voltage - Supply
Voltage - Supply refers to the range of voltage levels that an electronic component or circuit is designed to operate with. It indicates the minimum and maximum supply voltage that can be applied for the device to function properly. Providing supply voltages outside this range can lead to malfunction, damage, or reduced performance. This parameter is critical for ensuring compatibility between different components in a circuit.
5V - Terminal Position
In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.
DUAL - Peak Reflow Temperature (Cel)
Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.
NOT SPECIFIED - Number of Functions1
- Supply Voltage
Supply voltage refers to the electrical potential difference provided to an electronic component or circuit. It is crucial for the proper operation of devices, as it powers their functions and determines performance characteristics. The supply voltage must be within specified limits to ensure reliability and prevent damage to components. Different electronic devices have specific supply voltage requirements, which can vary widely depending on their design and intended application.
5V - Terminal Pitch
The center distance from one pole to the next.
2.54mm - Time@Peak Reflow Temperature-Max (s)
Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.
NOT SPECIFIED - Base Part Number
The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.
X9C102 - Pin Count
a count of all of the component leads (or pins)
8 - JESD-30 Code
JESD-30 Code refers to a standardized descriptive designation system established by JEDEC for semiconductor-device packages. This system provides a systematic method for generating designators that convey essential information about the package's physical characteristics, such as size and shape, which aids in component identification and selection. By using JESD-30 codes, manufacturers and engineers can ensure consistency and clarity in the specification of semiconductor packages across various applications and industries.
R-PDIP-T8 - Configuration
The parameter "Configuration" in electronic components refers to the specific arrangement or setup of the components within a circuit or system. It encompasses how individual elements are interconnected and their physical layout. Configuration can affect the functionality, performance, and efficiency of the electronic system, and may influence factors such as signal flow, impedance, and power distribution. Understanding the configuration is essential for design, troubleshooting, and optimizing electronic devices.
Potentiometer - Interface
In electronic components, the term "Interface" refers to the point at which two different systems, devices, or components connect and interact with each other. It can involve physical connections such as ports, connectors, or cables, as well as communication protocols and standards that facilitate the exchange of data or signals between the connected entities. The interface serves as a bridge that enables seamless communication and interoperability between different parts of a system or between different systems altogether. Designing a reliable and efficient interface is crucial in ensuring proper functionality and performance of electronic components and systems.
Up/Down (U/D, INC, CS) - Number of Circuits1
- Taper
In electronic components, the parameter "Taper" refers to the rate at which a variable resistor's resistance changes as the control knob is adjusted. Taper is commonly used to describe potentiometers and trimmer resistors. There are different types of tapers, such as linear taper, logarithmic taper, and audio taper, each affecting how the resistance changes in relation to the physical position of the control knob. The taper of a component is important in determining how the device responds to adjustments and can impact the overall performance and usability of the electronic circuit.
Linear - Number of Taps100
- Total Resistance
Total resistance in electronic components refers to the overall resistance encountered by an electric current as it flows through a circuit. It is the combined resistance of all the resistors or other components in the circuit. Total resistance is calculated by adding up the individual resistances in series circuits or by using formulas for parallel circuits. Understanding total resistance is crucial for determining the overall impedance of a circuit and for ensuring proper current flow and voltage distribution. It plays a key role in designing and analyzing electronic circuits to achieve desired performance and functionality.
1000Ohm - Resistance - Wiper (Ω) (Typ)
The parameter "Resistance - Wiper (Ω) (Typ)" in electronic components refers to the typical resistance value between the wiper terminal and one of the end terminals in a potentiometer or variable resistor. The wiper is a movable contact that can be adjusted to vary the resistance value of the component. This parameter indicates the expected resistance value at a specific position of the wiper, providing information on the component's performance and characteristics. It helps in understanding how the resistance changes as the wiper is adjusted, allowing for precise control and customization of the circuit.
40 - Resistor Terminal Voltage-Max
Resistor Terminal Voltage-Max refers to the maximum voltage that can be safely applied across the terminals of a resistor without causing damage or failure. This parameter is critical in circuit design as exceeding this voltage can lead to overheating, degradation of the resistor material, or even complete failure of the component. It is essential for engineers to consider this limit to ensure reliable and safe operation of electronic circuits.
5V - Temperature Coefficient (Typ)
The Temperature Coefficient (Typ) is a parameter used to describe how a specific characteristic of an electronic component changes with temperature. It indicates the typical rate at which the component's performance or behavior will vary as the temperature changes. For example, in resistors, the temperature coefficient specifies how the resistance value changes with temperature. A positive temperature coefficient means the resistance increases with temperature, while a negative coefficient indicates a decrease in resistance. Understanding the temperature coefficient is crucial for designing and selecting components that will operate reliably across a range of temperatures.
±600ppm/°C - Resistor Terminal Voltage-Min
Resistor Terminal Voltage-Min refers to the minimum voltage that can be applied across the terminals of a resistor without causing damage to the component. This parameter is important to ensure that the resistor operates within its specified limits and does not exceed its maximum voltage rating. Exceeding the minimum terminal voltage can lead to overheating, increased resistance, or even permanent damage to the resistor. It is crucial to adhere to the manufacturer's guidelines and datasheet specifications to prevent any potential issues with the resistor's performance and longevity.
-5V - Length9.525mm
- Height Seated (Max)
Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.
5.334mm - Width7.62mm
- RoHS Status
RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.
ROHS3 Compliant