

Siemens MT0100H
Manufacturer No:
MT0100H
Tiny WHSLManufacturer:
Utmel No:
2239-MT0100H
Package:
-
Description:
CONTROL TRANSFORMER,100VA,230/46
Quantity:
Unit Price: $158.894541
Ext Price: $158.89
Delivery:





Payment:











In Stock : 2365
Minimum: 1 Multiples: 1
Qty
Unit Price
Ext Price
1
$158.894541
$158.89
10
$149.900510
$1,499.01
100
$141.415576
$14,141.56
500
$133.410921
$66,705.46
1000
$125.859359
$125,859.36
Want a lower wholesale price? Please send RFQ, we will respond immediately.
RFQ Now
Add to RFQ list
You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.
For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.
RFQ (Request for Quotations)It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.
1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.
- TypeParameter
- Mounting Type
The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.
Chassis Mount - MfrSiemens
- PackageBox
- Product StatusActive
- Series
In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.
- - Size / Dimension
In electronic components, the parameter "Size / Dimension" refers to the physical dimensions of the component, such as its length, width, and height. These dimensions are crucial for determining how the component will fit into a circuit or system, as well as for ensuring compatibility with other components and the overall design requirements. The size of a component can also impact its performance characteristics, thermal properties, and overall functionality within a given application. Engineers and designers must carefully consider the size and dimensions of electronic components to ensure proper integration and functionality within their designs.
100.58mm L x 82.55mm W - Termination Style
"Termination style" in electronic components refers to the method used to connect the component to a circuit board or other electronic devices. It determines how the component's leads or terminals are designed for soldering or mounting onto the circuit board. Common termination styles include through-hole, surface mount, and wire lead terminations.Through-hole components have leads that are inserted through holes in the circuit board and soldered on the other side. Surface mount components have flat terminals that are soldered directly onto the surface of the circuit board. Wire lead terminations involve attaching wires to the component for connection.The choice of termination style depends on factors such as the type of component, the manufacturing process, and the space available on the circuit board. Different termination styles offer various advantages in terms of ease of assembly, reliability, and space efficiency in electronic designs.
Terminal Block - Voltage - Isolation
Voltage - Isolation is a parameter in electronic components that refers to the maximum voltage that can be safely applied between two isolated points without causing electrical breakdown or leakage. It is a crucial specification for components such as transformers, optocouplers, and capacitors that require isolation to prevent electrical interference or safety hazards. The voltage isolation rating ensures that the component can withstand the specified voltage without compromising its performance or safety. It is typically measured in volts and is an important consideration when designing circuits that require isolation between different parts of the system.
- - Current - Output (Max)
Current - Output (Max) is a parameter in electronic components that specifies the maximum amount of current that the component can deliver at its output. This parameter is crucial in determining the capability of the component to supply power to other parts of a circuit or system. It is typically measured in amperes (A) and helps in ensuring that the component can handle the required current without getting damaged or causing malfunctions. Designers and engineers use this specification to select components that can meet the current requirements of their circuits and prevent overloading or overheating issues.
- - Power - Max
Power - Max is a parameter that specifies the maximum amount of power that an electronic component can handle without being damaged. It is typically measured in watts and indicates the upper limit of power that can be safely supplied to the component. Exceeding the maximum power rating can lead to overheating, malfunction, or permanent damage to the component. It is important to consider the power-max rating when designing circuits or systems to ensure proper operation and longevity of the electronic components.
100VA - Voltage - Primary
Voltage - Primary is a parameter in electronic components that refers to the input voltage required for the primary side of a transformer or power supply. It specifies the voltage level that needs to be supplied to the primary winding of the component in order for it to function properly. This parameter is crucial for determining the compatibility and safe operation of the component within a given circuit or system. It is important to ensure that the input voltage provided to the primary side matches the specified voltage range to prevent damage to the component and ensure optimal performance.
230V, 460V, 575V - Primary Winding(s)
In electronic components, the primary winding(s) refer to the coil or coils of wire that receive electrical input in a transformer or an inductor. The primary winding is where the input voltage is applied, and it is responsible for inducing a magnetic field when current flows through it. This magnetic field then interacts with the secondary winding(s) to transfer energy or signal from one circuit to another. The number of primary windings and their configuration determine the voltage transformation ratio and the overall performance of the component.
- - Center Tap
In electronics, a center tap (CT) is a contact made to a point halfway along a winding of a transformer or inductor, or along the element of a resistor or a potentiometer.
No - Voltage - Secondary (Full Load)
Voltage - Secondary (Full Load) is a parameter that refers to the voltage output of an electronic component, such as a transformer or power supply, when it is operating at full load capacity. This parameter indicates the voltage level that the component is designed to deliver under maximum load conditions. It is important to consider this parameter when selecting electronic components to ensure that the output voltage meets the requirements of the intended application. Monitoring the voltage output at full load helps ensure the proper functioning and reliability of the electronic system.
115V, 95V - Secondary Winding(s)
In electronic components, the secondary winding(s) refer to the additional coils of wire wound around the core of a transformer or inductor. These secondary windings are used to transfer electrical energy from the primary winding to the load or another circuit. The number of secondary windings and their configuration determine the voltage, current, and impedance characteristics of the transformer or inductor. By controlling the turns ratio between the primary and secondary windings, the desired output voltage or current can be achieved. Overall, secondary windings play a crucial role in stepping up or stepping down voltages, isolating circuits, and transforming electrical energy in various electronic applications.
- - Height Seated (Max)
Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.
88.39mm