STMicroelectronics L6388D013TR
STMicroelectronics L6388D013TR
L6388  Pinout Diagram_1
L6388  Pinout Diagram_2
L6388  Pinout Diagram_3
L6388 Outline Dimensions_1
L6388 Outline Dimensions_2
feed

STMicroelectronics L6388D013TR

Gate Drivers ICs Surface Mount Tape & Reel (TR) Obsolete Gate Drivers ICs EAR99

Manufacturer No:

L6388D013TR

Manufacturer:

STMicroelectronics

Utmel No:

2381-L6388D013TR

Package:

8-SOIC (0.154, 3.90mm Width)

Datasheet:

L6388

ECAD Model:

Description:

Surface Mount Tape & Reel (TR) Obsolete EAR99 Gate Drivers ICs Inverting 2 600V V 8-SOIC (0.154, 3.90mm Width) L6388

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
L6388D013TR information

Specifications
Documents & Media
Product Details
STMicroelectronics L6388D013TR technical specifications, attributes, parameters and parts with similar specifications to STMicroelectronics L6388D013TR.
  • Type
    Parameter
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Surface Mount
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Surface Mount
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    8-SOIC (0.154, 3.90mm Width)
  • Number of Pins
    8
  • Driver Configuration
    Half-Bridge
  • Logic voltage-VIL, VIH
    1.1V 1.8V
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -40°C~125°C TJ
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tape & Reel (TR)
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3/e4
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Obsolete
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    8
  • ECCN Code

    An ECCN (Export Control Classification Number) is an alphanumeric code used by the U.S. Bureau of Industry and Security to identify and categorize electronic components and other dual-use items that may require an export license based on their technical characteristics and potential for military use.

    EAR99
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    MATTE TIN/NICKEL PALLADIUM GOLD
  • Max Power Dissipation

    The maximum power that the MOSFET can dissipate continuously under the specified thermal conditions.

    750mW
  • Voltage - Supply

    Voltage - Supply refers to the range of voltage levels that an electronic component or circuit is designed to operate with. It indicates the minimum and maximum supply voltage that can be applied for the device to function properly. Providing supply voltages outside this range can lead to malfunction, damage, or reduced performance. This parameter is critical for ensuring compatibility between different components in a circuit.

    17V Max
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    DUAL
  • Terminal Form

    Occurring at or forming the end of a series, succession, or the like; closing; concluding.

    GULL WING
  • Number of Functions
    1
  • Supply Voltage

    Supply voltage refers to the electrical potential difference provided to an electronic component or circuit. It is crucial for the proper operation of devices, as it powers their functions and determines performance characteristics. The supply voltage must be within specified limits to ensure reliability and prevent damage to components. Different electronic devices have specific supply voltage requirements, which can vary widely depending on their design and intended application.

    15V
  • Frequency

    In electronic components, the parameter "Frequency" refers to the rate at which a signal oscillates or cycles within a given period of time. It is typically measured in Hertz (Hz) and represents how many times a signal completes a full cycle in one second. Frequency is a crucial aspect in electronic components as it determines the behavior and performance of various devices such as oscillators, filters, and communication systems. Understanding the frequency characteristics of components is essential for designing and analyzing electronic circuits to ensure proper functionality and compatibility with other components in a system.

    400kHz
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    L6388
  • Pin Count

    a count of all of the component leads (or pins)

    8
  • Max Output Current

    The maximum current that can be supplied to the load.

    650mA
  • Power Supplies

    an electronic circuit that converts the voltage of an alternating current (AC) into a direct current (DC) voltage.?

    15V
  • Power Dissipation

    the process by which an electronic or electrical device produces heat (energy loss or waste) as an undesirable derivative of its primary action.

    750mW
  • Output Current

    The rated output current is the maximum load current that a power supply can provide at a specified ambient temperature. A power supply can never provide more current that it's rated output current unless there is a fault, such as short circuit at the load.

    650mA
  • Propagation Delay

    the flight time of packets over the transmission link and is limited by the speed of light.

    300 ns
  • Input Type

    Input type in electronic components refers to the classification of the signal or data that a component can accept for processing or conversion. It indicates whether the input is analog, digital, or a specific format such as TTL or CMOS. Understanding input type is crucial for ensuring compatibility between different electronic devices and circuits, as it determines how signals are interpreted and interacted with.

    Inverting
  • Turn On Delay Time

    Turn-on delay, td(on), is the time taken to charge the input capacitance of the device before drain current conduction can start.

    300 ns
  • Rise Time

    In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value.

    100ns
  • Fall Time (Typ)

    Fall Time (Typ) is a parameter used to describe the time it takes for a signal to transition from a high level to a low level in an electronic component, such as a transistor or an integrated circuit. It is typically measured in nanoseconds or microseconds and is an important characteristic that affects the performance of the component in digital circuits. A shorter fall time indicates faster switching speeds and can result in improved overall circuit performance, such as reduced power consumption and increased data transmission rates. Designers often consider the fall time specification when selecting components for their circuits to ensure proper functionality and efficiency.

    80 ns
  • Rise / Fall Time (Typ)

    The parameter "Rise / Fall Time (Typ)" in electronic components refers to the time it takes for a signal to transition from a specified low level to a specified high level (rise time) or from a high level to a low level (fall time). It is typically measured in nanoseconds or picoseconds and is an important characteristic in determining the speed and performance of a component, such as a transistor or integrated circuit. A shorter rise/fall time indicates faster signal switching and can impact the overall speed and efficiency of a circuit. Designers often consider this parameter when selecting components for high-speed applications to ensure proper signal integrity and timing.

    70ns 40ns
  • Channel Type

    In electronic components, the parameter "Channel Type" refers to the type of channel through which electrical signals or current flow within the component. This parameter is commonly associated with field-effect transistors (FETs) and other semiconductor devices. The channel type can be categorized as either N-channel or P-channel, depending on the polarity of the majority charge carriers (electrons or holes) that carry the current within the channel. N-channel devices have an electron-conducting channel, while P-channel devices have a hole-conducting channel. Understanding the channel type is crucial for proper circuit design and component selection to ensure compatibility and optimal performance.

    Independent
  • Number of Drivers
    2
  • Turn On Time

    The time that it takes a gate circuit to allow a current to reach its full value.

    0.3 μs
  • Output Peak Current Limit-Nom

    Output Peak Current Limit-Nom is a parameter in electronic components that specifies the maximum current that can be delivered by the output under normal operating conditions. This limit is typically set to protect the component from damage due to excessive current flow. It ensures that the component operates within its safe operating limits and prevents overheating or other potential issues. Designers and engineers use this parameter to ensure proper functioning and reliability of the electronic system in which the component is used.

    0.65A
  • Gate Type

    In electronic components, the term "Gate Type" typically refers to the type of logic gate used in digital circuits. A logic gate is a fundamental building block of digital circuits that performs a specific logical operation based on the input signals it receives. Common types of logic gates include AND, OR, NOT, NAND, NOR, XOR, and XNOR gates.The Gate Type parameter specifies the specific logic function that the gate performs, such as AND, OR, or NOT. Different gate types have different truth tables that define their behavior based on the input signals. By selecting the appropriate gate type for a given application, designers can implement various logical functions and operations in digital circuits.Understanding the gate type is essential for designing and analyzing digital circuits, as it determines how the circuit processes and manipulates binary data. Choosing the right gate type is crucial for ensuring the correct functionality and performance of the digital system being designed.

    IGBT, N-Channel MOSFET
  • Current - Peak Output (Source, Sink)

    The parameter "Current - Peak Output (Source, Sink)" in electronic components refers to the maximum amount of current that the component can either supply (source) or sink (absorb) under peak conditions. This parameter is important for understanding the capability of the component to handle sudden surges or spikes in current without being damaged. The peak output current is typically specified in datasheets and is crucial for designing circuits that require high current handling capabilities. It is essential to consider this parameter to ensure the component operates within its safe operating limits and to prevent potential damage or malfunction.

    400mA 650mA
  • High Side Driver

    A High Side Driver is an electronic component used in power management applications to control the switching of high-side power devices such as MOSFETs or IGBTs. It is designed to drive the gate or base of the power device to turn it on or off, allowing current to flow through the load or cutting off the current flow. High Side Drivers are commonly used in automotive, industrial, and consumer electronics to control various loads such as motors, solenoids, and heaters. They provide isolation between the control circuitry and the high-side power device, ensuring safe and reliable operation of the system.

    YES
  • High Side Voltage - Max (Bootstrap)

    The parameter "High Side Voltage - Max (Bootstrap)" in electronic components refers to the maximum voltage that can be applied to the high side of a bootstrap circuit. Bootstrap circuits are commonly used in power electronics to drive high-side MOSFETs or IGBTs efficiently. This parameter is crucial for ensuring the proper operation and reliability of the bootstrap circuit, as exceeding the maximum voltage can lead to component failure or malfunction. Designers must carefully consider this specification when selecting components and designing circuits to prevent damage and ensure optimal performance.

    600V
  • Length
    4.9mm
  • Height Seated (Max)

    Height Seated (Max) is a parameter in electronic components that refers to the maximum allowable height of the component when it is properly seated or installed on a circuit board or within an enclosure. This specification is crucial for ensuring proper fit and alignment within the overall system design. Exceeding the maximum seated height can lead to mechanical interference, electrical shorts, or other issues that may impact the performance and reliability of the electronic device. Manufacturers provide this information to help designers and engineers select components that will fit within the designated space and function correctly in the intended application.

    1.75mm
  • Width
    3.9mm
  • Radiation Hardening

    Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space (especially beyond the low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

    No
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining
Download datasheets and manufacturer documentation for STMicroelectronics L6388D013TR.

L6388D013TR Overview

The 8-SOIC (0.154, 3.90mm Width) package provides greater flexibility.Tape & Reel (TR) is the packaging method.Gate drivers is configured wGate driversh 2 drivers.In the direction of Surface Mount, gate drivers is mounted.WGate driversh a 17V Max supply voltage, gate drivers is able to demonstrate Gate driverss superiorGate driversy.Gate type IGBT, N-Channel MOSFET has been used in its design.This device is allowed to operate in a temperature range of -40°C~125°C TJ.Input type of Inverting is used.Initially, the configuration is composed of 8 terminations.Mosfet driver contains a variety of related parts under Mosfet drivers base part number L6388.Mounting the device requires Surface Mount.During design, it is configured with 8 pins.A supply voltage of 15V is required for operation.Mosfet driver is possible for the output current to be as low as 650mA.A total of 8 pins are available for component connections.Max (Bootstrap) can be as high as 600V.The output current can be set to 650mA.Using 750mW as an example, the maximum power dissipation shows how well it is able to transfer and conduct power loss without becoming overheated.With its power supplies of 15V, it solves the problems of power supply for a variety of applications.By increasing the frequency of 400kHz, efficiency can be improved.

L6388D013TR Features

Embedded in the Tape & Reel (TR) package
2 drivers
Employing a gate type of IGBT, N-Channel MOSFET
8 pins
High-side voltage - Max (Bootstrap) of 600V
Maximum power dissipation of 750mW

L6388D013TR Applications

There are a lot of STMicroelectronics
L6388D013TR gate drivers applications.


  • A/D drivers
  • Line drivers
  • Portable computers
  • High-speed communications
  • RGB applications
  • Broadcast equipment
  • Active filtering
  • Head-up and Head mounted displays
  • High current laser/LED systems
  • LCD/LCoS/DLP portable and embedded pico projectors
L6388D013TR Relevant information

Hot Sale
Related Categories
Similar Products
Related Products
Same Manufacturer Products
The following parts include "L6388D013TR" in STMicroelectronics L6388D013TR.
  • Part Number
  • Manufacturer
  • Package
  • Description