STMicroelectronics M74HC245B1R
STMicroelectronics M74HC245B1R
M74HC245  Pinout Diagram_1
M74HC245  Pinout Diagram_2
M74HC245  Pinout Diagram_3
feed

STMicroelectronics M74HC245B1R

DUAL Transceiver, Non-Inverting 2V~6V 3-State Buffers 74HC Series M74HC245 20 Pins 20-DIP (0.300, 7.62mm)

Manufacturer No:

M74HC245B1R

Manufacturer:

STMicroelectronics

Utmel No:

2381-M74HC245B1R

Package:

20-DIP (0.300, 7.62mm)

Datasheet:

M74HC245

ECAD Model:

Description:

DUAL Transceiver, Non-Inverting 2V~6V 3-State Buffers 74HC Series M74HC245 20 Pins 20-DIP (0.300, 7.62mm)

Quantity:

Delivery:

DHLTNTUPSFedExSF-Express

Payment:

paypalvisadiscovermastercard

In Stock : Please Inquire

Please send RFQ , we will respond immediately.

United States

China

Canada

Japan

Russia

Germany

United Kingdom

Singapore

Italy

Hong Kong(China)

Taiwan(China)

France

Korea

Mexico

Netherlands

Malaysia

Austria

Spain

Switzerland

Poland

Thailand

Vietnam

India

United Arab Emirates

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antigua & Barbuda

Argentina

Armenia

Aruba

Australia

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bonaire, Sint Eustatius and Saba

Bosnia & Herzegovina

Botswana

Brazil

British Indian Ocean Territory

British Virgin Islands

Brunei

Bulgaria

Burkina Faso

Burundi

Cabo Verde

Cambodia

Cameroon

Cayman Islands

Central African Republic

Chad

Chile

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo (DRC)

Cook Islands

Costa Rica

Côte d’Ivoire

Croatia

Cuba

Curaçao

Cyprus

Czechia

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guernsey

Guinea

Guinea-Bissau

Guyana

Haiti

Honduras

Hungary

Iceland

Indonesia

Iran

Iraq

Ireland

Isle of Man

Israel

Jamaica

Jersey

Jordan

Kazakhstan

Kenya

Kiribati

Kosovo

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macao(China)

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Micronesia

Moldova

Monaco

Mongolia

Montenegro

Montserrat

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

North Korea

North Macedonia

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Palestinian Authority

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn Islands

Portugal

Puerto Rico

Qatar

Réunion

Romania

Rwanda

Samoa

San Marino

São Tomé & Príncipe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Sint Maarten

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

South Sudan

Sri Lanka

St Helena, Ascension, Tristan da Cunha

St. Barthélemy

St. Kitts & Nevis

St. Lucia

St. Martin

St. Pierre & Miquelon

St. Vincent & Grenadines

Sudan

Suriname

Svalbard & Jan Mayen

Sweden

Syria

Tajikistan

Tanzania

Timor-Leste

Togo

Tokelau

Tonga

Trinidad & Tobago

Tunisia

Turkey

Turkmenistan

Turks & Caicos Islands

Tuvalu

U.S. Outlying Islands

U.S. Virgin Islands

Uganda

Ukraine

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Wallis & Futuna

Yemen

Zambia

Zimbabwe

User Guide

Purchase & Inquiry
Package
Shipping Information
Shopping Manual
Purchase

You may place an order without registering to Utmel.
We strongly suggest you sign in before purchasing as you can track your order in real time.

Means of Payment

For your convenience, we accept multiple payment methods in USD, including PayPal, Credit Card, and wire transfer.

RFQ (Request for Quotations)

It is recommended to request for quotations to get the latest prices and inventories about the part.
Our sales will reply to your request by email within 24 hours.

IMPORTANT NOTICE

1. You'll receive an order information email in your inbox. (Please remember to check the spam folder if you didn't hear from us).
2. Since inventories and prices may fluctuate to some extent, the sales manager is going to reconfirm the order and let you know if there are any updates.

Shipping Cost

Shipping starts at $40, but some countries will exceed $40. For example (South Africa, Brazil, India, Pakistan, Israel, etc.)
The basic freight (for package ≤0.5kg or corresponding volume) depends on the time zone and country.

Shipping Method

Currently, our products are shipped through DHL, FedEx, SF, and UPS.

Delivery Time

Once the goods are shipped, estimated delivery time depends on the shipping methods you chose:

FedEx International, 5-7 business days.

The following are some common countries' logistic time.transport
  • Prepare productStep1:Prepare product
  • Vacuum packagingStep2:Vacuum packaging
  • Anti-static bagStep3:Anti-static bag
  • Individual packageStep4:Individual package
  • Packaging boxStep5:Packaging box
  • Barcode shipping labelStep6:Barcode shipping label
M74HC245B1R information

Specifications
Documents & Media
Product Details
STMicroelectronics M74HC245B1R technical specifications, attributes, parameters and parts with similar specifications to STMicroelectronics M74HC245B1R.
  • Type
    Parameter
  • Mount

    In electronic components, the term "Mount" typically refers to the method or process of physically attaching or fixing a component onto a circuit board or other electronic device. This can involve soldering, adhesive bonding, or other techniques to secure the component in place. The mounting process is crucial for ensuring proper electrical connections and mechanical stability within the electronic system. Different components may have specific mounting requirements based on their size, shape, and function, and manufacturers provide guidelines for proper mounting procedures to ensure optimal performance and reliability of the electronic device.

    Through Hole
  • Mounting Type

    The "Mounting Type" in electronic components refers to the method used to attach or connect a component to a circuit board or other substrate, such as through-hole, surface-mount, or panel mount.

    Through Hole
  • Package / Case

    refers to the protective housing that encases an electronic component, providing mechanical support, electrical connections, and thermal management.

    20-DIP (0.300, 7.62mm)
  • Number of Pins
    20
  • Weight
    4.535924g
  • Number of Elements
    1
  • Operating Temperature

    The operating temperature is the range of ambient temperature within which a power supply, or any other electrical equipment, operate in. This ranges from a minimum operating temperature, to a peak or maximum operating temperature, outside which, the power supply may fail.

    -55°C~125°C TA
  • Packaging

    Semiconductor package is a carrier / shell used to contain and cover one or more semiconductor components or integrated circuits. The material of the shell can be metal, plastic, glass or ceramic.

    Tube
  • Series

    In electronic components, the "Series" refers to a group of products that share similar characteristics, designs, or functionalities, often produced by the same manufacturer. These components within a series typically have common specifications but may vary in terms of voltage, power, or packaging to meet different application needs. The series name helps identify and differentiate between various product lines within a manufacturer's catalog.

    74HC
  • JESD-609 Code

    The "JESD-609 Code" in electronic components refers to a standardized marking code that indicates the lead-free solder composition and finish of electronic components for compliance with environmental regulations.

    e3
  • Part Status

    Parts can have many statuses as they progress through the configuration, analysis, review, and approval stages.

    Obsolete
  • Moisture Sensitivity Level (MSL)

    Moisture Sensitivity Level (MSL) is a standardized rating that indicates the susceptibility of electronic components, particularly semiconductors, to moisture-induced damage during storage and the soldering process, defining the allowable exposure time to ambient conditions before they require special handling or baking to prevent failures

    1 (Unlimited)
  • Number of Terminations
    20
  • Terminal Finish

    Terminal Finish refers to the surface treatment applied to the terminals or leads of electronic components to enhance their performance and longevity. It can improve solderability, corrosion resistance, and overall reliability of the connection in electronic assemblies. Common finishes include nickel, gold, and tin, each possessing distinct properties suitable for various applications. The choice of terminal finish can significantly impact the durability and effectiveness of electronic devices.

    Matte Tin (Sn)
  • Additional Feature

    Any Feature, including a modified Existing Feature, that is not an Existing Feature.

    WITH DIRECTION CONTROL
  • Max Power Dissipation

    The maximum power that the MOSFET can dissipate continuously under the specified thermal conditions.

    500mW
  • Voltage - Supply

    Voltage - Supply refers to the range of voltage levels that an electronic component or circuit is designed to operate with. It indicates the minimum and maximum supply voltage that can be applied for the device to function properly. Providing supply voltages outside this range can lead to malfunction, damage, or reduced performance. This parameter is critical for ensuring compatibility between different components in a circuit.

    2V~6V
  • Terminal Position

    In electronic components, the term "Terminal Position" refers to the physical location of the connection points on the component where external electrical connections can be made. These connection points, known as terminals, are typically used to attach wires, leads, or other components to the main body of the electronic component. The terminal position is important for ensuring proper connectivity and functionality of the component within a circuit. It is often specified in technical datasheets or component specifications to help designers and engineers understand how to properly integrate the component into their circuit designs.

    DUAL
  • Peak Reflow Temperature (Cel)

    Peak Reflow Temperature (Cel) is a parameter that specifies the maximum temperature at which an electronic component can be exposed during the reflow soldering process. Reflow soldering is a common method used to attach electronic components to a circuit board. The Peak Reflow Temperature is crucial because it ensures that the component is not damaged or degraded during the soldering process. Exceeding the specified Peak Reflow Temperature can lead to issues such as component failure, reduced performance, or even permanent damage to the component. It is important for manufacturers and assemblers to adhere to the recommended Peak Reflow Temperature to ensure the reliability and functionality of the electronic components.

    NOT SPECIFIED
  • Number of Functions
    1
  • Supply Voltage

    Supply voltage refers to the electrical potential difference provided to an electronic component or circuit. It is crucial for the proper operation of devices, as it powers their functions and determines performance characteristics. The supply voltage must be within specified limits to ensure reliability and prevent damage to components. Different electronic devices have specific supply voltage requirements, which can vary widely depending on their design and intended application.

    4.5V
  • Terminal Pitch

    The center distance from one pole to the next.

    2.54mm
  • Time@Peak Reflow Temperature-Max (s)

    Time@Peak Reflow Temperature-Max (s) refers to the maximum duration that an electronic component can be exposed to the peak reflow temperature during the soldering process, which is crucial for ensuring reliable solder joint formation without damaging the component.

    NOT SPECIFIED
  • Base Part Number

    The "Base Part Number" (BPN) in electronic components serves a similar purpose to the "Base Product Number." It refers to the primary identifier for a component that captures the essential characteristics shared by a group of similar components. The BPN provides a fundamental way to reference a family or series of components without specifying all the variations and specific details.

    M74HC245
  • Pin Count

    a count of all of the component leads (or pins)

    20
  • Qualification Status

    An indicator of formal certification of qualifications.

    Not Qualified
  • Output Type

    The "Output Type" parameter in electronic components refers to the type of signal or data that is produced by the component as an output. This parameter specifies the nature of the output signal, such as analog or digital, and can also include details about the voltage levels, current levels, frequency, and other characteristics of the output signal. Understanding the output type of a component is crucial for ensuring compatibility with other components in a circuit or system, as well as for determining how the output signal can be utilized or processed further. In summary, the output type parameter provides essential information about the nature of the signal that is generated by the electronic component as its output.

    3-State
  • Polarity

    In electronic components, polarity refers to the orientation or direction in which the component must be connected in a circuit to function properly. Components such as diodes, capacitors, and LEDs have polarity markings to indicate which terminal should be connected to the positive or negative side of the circuit. Connecting a component with incorrect polarity can lead to malfunction or damage. It is important to pay attention to polarity markings and follow the manufacturer's instructions to ensure proper operation of electronic components.

    Inverting, Non-Inverting
  • Supply Voltage-Max (Vsup)

    The parameter "Supply Voltage-Max (Vsup)" in electronic components refers to the maximum voltage that can be safely applied to the component without causing damage. It is an important specification to consider when designing or using electronic circuits to ensure the component operates within its safe operating limits. Exceeding the maximum supply voltage can lead to overheating, component failure, or even permanent damage. It is crucial to adhere to the specified maximum supply voltage to ensure the reliable and safe operation of the electronic component.

    6V
  • Power Supplies

    an electronic circuit that converts the voltage of an alternating current (AC) into a direct current (DC) voltage.?

    2/6V
  • Supply Voltage-Min (Vsup)

    The parameter "Supply Voltage-Min (Vsup)" in electronic components refers to the minimum voltage level required for the component to operate within its specified performance range. This parameter indicates the lowest voltage that can be safely applied to the component without risking damage or malfunction. It is crucial to ensure that the supply voltage provided to the component meets or exceeds this minimum value to ensure proper functionality and reliability. Failure to adhere to the specified minimum supply voltage may result in erratic behavior, reduced performance, or even permanent damage to the component.

    2V
  • Number of Channels
    8
  • Number of Ports

    A port is identified for each transport protocol and address combination by a 16-bit unsigned number,.

    2
  • Power Dissipation

    the process by which an electronic or electrical device produces heat (energy loss or waste) as an undesirable derivative of its primary action.

    500mW
  • Number of Bits
    8
  • Propagation Delay

    the flight time of packets over the transmission link and is limited by the speed of light.

    120 ns
  • Turn On Delay Time

    Turn-on delay, td(on), is the time taken to charge the input capacitance of the device before drain current conduction can start.

    120 ns
  • Family

    In electronic components, the parameter "Family" typically refers to a categorization or classification system used to group similar components together based on their characteristics, functions, or applications. This classification helps users easily identify and select components that meet their specific requirements. The "Family" parameter can include various subcategories such as resistors, capacitors, diodes, transistors, integrated circuits, and more. Understanding the "Family" of an electronic component can provide valuable information about its compatibility, performance specifications, and potential uses within a circuit or system. It is important to consider the "Family" parameter when designing or troubleshooting electronic circuits to ensure proper functionality and compatibility with other components.

    HC/UH
  • Logic Function

    In electronic components, the term "Logic Function" refers to the specific operation or behavior of a component based on its input signals. It describes how the component processes the input signals to produce the desired output. Logic functions are fundamental to digital circuits and are used to perform logical operations such as AND, OR, NOT, and XOR.Each electronic component, such as logic gates or flip-flops, is designed to perform a specific logic function based on its internal circuitry. By understanding the logic function of a component, engineers can design and analyze complex digital systems to ensure proper functionality and performance. Different logic functions can be combined to create more complex operations, allowing for the creation of sophisticated digital devices and systems.

    Inverting, Transceiver
  • Direction

    In electronic components, the parameter "Direction" refers to the orientation or alignment in which the component is designed to operate effectively. This parameter is particularly important for components such as diodes, transistors, and capacitors, which have specific polarity or orientation requirements for proper functionality. For example, diodes allow current flow in one direction only, so their direction parameter indicates the correct orientation for current flow. Similarly, polarized capacitors have a positive and negative terminal, requiring proper alignment for correct operation. Understanding and adhering to the direction parameter is crucial for ensuring the reliable and efficient performance of electronic components in a circuit.

    Bidirectional
  • Logic Type

    Logic Type in electronic components refers to the classification of circuits based on the logical operations they perform. It includes types such as AND, OR, NOT, NAND, NOR, XOR, and XNOR, each defining the relationship between binary inputs and outputs. The logic type determines how the inputs affect the output state based on specific rules of Boolean algebra. This classification is crucial for designing digital circuits and systems, enabling engineers to select appropriate components for desired functionalities.

    Transceiver, Non-Inverting
  • Max I(ol)

    Max I(ol) refers to the maximum output current that a specific electronic component, such as a transistor or integrated circuit, can sink or source. This parameter is crucial in determining the capability of the component to drive external loads without being damaged. It is typically specified in the component's datasheet and is important for ensuring proper operation and reliability of the circuit in which the component is used. Designers must ensure that the output current requirements of the circuit do not exceed the specified "Max I(ol)" value to prevent overloading and potential failure of the component.

    0.006 A
  • Prop. Delay@Nom-Sup

    The parameter "Prop. Delay@Nom-Sup" in electronic components refers to the propagation delay at nominal supply voltage. Propagation delay is the time it takes for a signal to travel from the input of a component to the output, typically measured in nanoseconds or picoseconds. The nominal supply voltage is the standard operating voltage specified for the component.This parameter is important because it affects the overall speed and performance of the electronic circuit. A shorter propagation delay means faster signal processing and better overall performance. Designers need to consider the propagation delay at the nominal supply voltage when selecting components for their circuits to ensure proper functionality and meet performance requirements.

    27 ns
  • Control Type

    Control Type in electronic components refers to the method used to regulate or manipulate an electronic system's behavior or output. It can indicate whether the component operates in an analog or digital manner, and may include types such as on/off, proportional, or pulse-width modulation. Understanding the control type is crucial for determining how components interact with each other and the overall system's functionality.

    COMMON CONTROL
  • Translation

    In electronic components, "Translation" refers to the process of converting one form of data or signal into another form. This can involve converting analog signals to digital signals or vice versa, as well as converting between different communication protocols or interfaces. Translation is essential for enabling different components or systems to communicate and work together effectively. It ensures compatibility and interoperability between various devices in a system or network. Overall, translation plays a crucial role in facilitating the seamless exchange of information and signals within electronic systems.

    N/A
  • Height
    2.68mm
  • Length
    25.4mm
  • Width
    7.1mm
  • RoHS Status

    RoHS means “Restriction of Certain Hazardous Substances” in the “Hazardous Substances Directive” in electrical and electronic equipment.

    ROHS3 Compliant
  • Lead Free

    Lead Free is a term used to describe electronic components that do not contain lead as part of their composition. Lead is a toxic material that can have harmful effects on human health and the environment, so the electronics industry has been moving towards lead-free components to reduce these risks. Lead-free components are typically made using alternative materials such as silver, copper, and tin. Manufacturers must comply with regulations such as the Restriction of Hazardous Substances (RoHS) directive to ensure that their products are lead-free and environmentally friendly.

    Lead Free
0 Similar Products Remaining
Download datasheets and manufacturer documentation for STMicroelectronics M74HC245B1R.

M74HC245B1R Overview

There is a neat 20-DIP (0.300, 7.62mm) package used in buffer. A Tube external packaging is used for this buffer. The external packaging used in this logic IC is the Through Hole external packaging. This is a typical Transceiver, Non-Inverting logic integrated circuit with a wide range of applications. There's a 2V~6V supply voltage for this logic IC. This automotive buffer is capable of working through -55°C~125°C TA. There are 3-State outputs that digital buffer can handle. 74HC series devices are included in this network transceiver. 20 terminations with different functions are available on this transceiver. An input voltage of 4.5V is required. HC/UH family part. With the electrical part, 20 pins are set. Through Hole applications are suitable for it. There are 20 pins on digital buffer. The bus transceiver has 2 ports. For other related electronic components, you can search M74HC245. COMMON CONTROL control technology is used to start up the automotive buffer. Power supplies with a 2/6V volt rating are recommended. The digital buffer requires a minimum voltage of 2V. 8 efficient bits are included in the package of the network transceiver. For better service, buffer includes WITH DIRECTION CONTROL. High-quality communication is provided by 8 channels on thisnetwork transceiver.

M74HC245B1R Features

WITH DIRECTION CONTROL
Logic Type: Transceiver, Non-Inverting
HC/UH Family
74HC Series
3-State Output Type

M74HC245B1R Applications

There are a lot of STMicroelectronics
M74HC245B1R Buffers & Transceivers applications.


  • Wireless modems
  • Remote controls
  • Wireless network systems
  • Satellite communications networks
  • Ethernet circuitry
  • Wired telephone
  • Cordless telephone
  • Desktop PC
  • Notebook
  • Pocket PC
M74HC245B1R Relevant information

Hot Sale
Related Categories
Similar Products
Related Products
Same Manufacturer Products
The following parts include "M74HC245B1R" in STMicroelectronics M74HC245B1R.
  • Part Number
  • Manufacturer
  • Package
  • Description